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Brief	intro

Now: @Telefonica Research, Barcelona
Past: @Yahoo	Labs,	Barcelona

@USF,	Florida
• Distributed	systems,	P2P	networks
• Social	Network	Analysis
• (Distributed)	(Stream)	Graph	Mining
• Personal	Data	Privacy
• Reverse	engineering	RTB,	targeted	ads
• Hate	speech/cyberbullying/fake	news
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2 EXCELLENCE

1 Summary

Ed Snowden was clear:

Our cyber infrastructure has been compromised in
ways we could not even imagine

Fueled by a string of high profile attacks and re-
cent revelations about unprecedented cyber surveil-
lance, interest in systems security is rising—not
just among industry and governments, but even
among individual citizens across Europe. Corpo-
rate organizations worry about the viability of their
businesses, nation states about cyber attacks by
other nation states or terrorist groups, and citizens about the trustworthiness of the ICT infrastructures. The long list
of recent security incidents is eroding people’s trust in the digital economy and shows that more research is needed.

Unfortunately, expertise is fragmented across many places, while the exchange of knowledge is lacking. If one
group specializes in code-reuse attacks and another in embedded systems, ideally they should team up to detect code-
reuse vulnerabilities in embedded devices. Today, however, the flow of ideas is limited to publications and ad-hoc
collaborations. A more e�cient exchange would occur if a researcher temporarily joins the other group to collaborate
directly on-site.

Over the past few years Europe has created several world-class research centers in systems security. They publish
in the most prestigious venues and have a significant impact on both the scientific community and society at large.
Nevertheless, in terms of numbers, most top groups are still in the US and the ability to collaborate with them would
be a tremendous boost for security research in Europe.

We plan to foster such collaborations by supporting researchers from European institutes to spend time with
their American counterparts in top universities. We will gather the research results in a repository that links all the
exchanges and provides a valuable input for collaborative projects in itself. We will focus our research e↵orts on both
advanced attacks (e.g., exploits, malware, and exfiltration techniques), and defenses (e.g., developing secure software
and protecting resource-constrained devices).

Give the consortium partners’ track record in research, and the receiving institutions’ reputation as world class
research groups, the exchanges will be of mutual benefit to both sides. By means of workshops and summer schools,
we will further facilitate the exchange of knowledge. Moreover, given the high impact of the consortium’s past research
on society at large, we expect the research results to lead to significant improvements in systems security.

2 Excellence

2.1 Quality, innovative aspects and credibility of the research

2.1.1 Overall Goal

Over the past 5 years a new vibrant research community has been created in Europe: the community of “Systems
Security”. Measuring more than 100 research groups and supported, in part, by the SysSec Network for Excellence,
the community has put Europe in the map of “Systems Security” and made tangible contributions in the area of
cyberattacks, software/hardware vulnerabilities, and softeware hardening. The overall Objective of PROTASIS is to
expand the reach of SysSec to the international community via a joint research program in the area of Systems
Security spearheaded by the need to develop a computing infrastructure that will be trusted by the citizens and the
organizations they use it. Through a novel international and intersectoral program the participants will advance the
state-of-the art in the area of security and privacy and will sharpen their skills using the most advanced methods
for cyberatacks and malware. These advances in the state of the art (i) will create innovation opportunities for all
beneficiaries, (ii) will improve the international placement of the European academic institutions, and (iii) will have a
lasting impact in the Systems Security community in Europe and the broader constituency of the project.

2.1.2 Objectives

1. Develop state-of-the-art research in the areas of cyber attacks and defences. In particular PROTASIS aims
to push the boundaries of the state of the art and (i) develop novel ways to protect applications against attacks and
intrusions, (ii) address exfiltration and loss of sensitive data, (iii) explore hardware-assisted defences that provide speed
and non-hackable vantage points, (iv) focus on the upcoming Internet of Things and associated embedded systems,
and, last but not least, develop mechanisms to ensure privacy in a networked world.

2. Instill Confidence in cyberspace: help European Citizens restore their trust and confidence in cyberspace.
Over the past couple of years, the citizens’ confidence in cyberspace has been significantly challenged. PROTASIS
aims to empower citizens with tools that will increase their confidence on the devices they use and address their
concerns about the protection of their fundamental human rights.

3. Transfer knowledge through International and Intersectoral Reach: the beneficiaries of the project
have already developed, within the context of the SysSec Network of Excellence, a vibrant community in Europe
working in the area of Systems Security. It is now time to broaden their horizon, reach out to the other side of the
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Telefonica	Research

• Scientific	group	created	in	2006,	located	in	Barcelona,	Spain
• 14+	PhDs,	PhD	students,	interns,…
• Publishing	to	academic	venues	+	patents	for	IP	of	TEF
• Participating	 in	EU	and	national	projects
• Internal	innovation	projects

4

Networking
&	Systems

Machine
Learning

UX,	HCI



Outline

• Scalable	Online	Betweenness Centrality	in	Evolving	Graphs
• Application:	Minimum	Wiener	&	Relaxed	Connector	Problem
• Load	Balancing	of	Skewed	Workloads:	Partial	Key	Grouping

5



Scalable	Online	Betweenness Centrality	in	
Evolving	Graphs*
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Graph	Mining

• Graphs	are	everywhere!
• Online	social	networks,	mobile	call	networks,	CQA	networks,	web	networks...

• They	change	over	time!
• New	vertices	and	edges	added
• Old	vertices	and	edges	removed
• Weights	changing

• Graph	properties	reveal	potentials	of	network	processes
• Diffusion,	search,	important	network	elements,	etc.

• Studying	on	dynamic	graphs:	challenging…	depending	on	the	metric
ÞHow	to	measure	exact betweenness centrality	online in	dynamic graphs?
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• Measures	how	much	a	vertex	lies	on	the	shortest	paths of	other	vertices
• O(nm)	in	unweighted	graphs,	O(n2logn+nm)	in	weighted	graphs
• High	BC	vertices	(edges)
• Control	communication	between	distant	vertices
• Allocate	resources	for	routing,	content	dissemination,	malware	detection

BC:	Betweenness Centrality

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, APRIL 2014 3

such as Storm1, S42, Samza3, or Hadoop. Our exper-
iments test our method on graphs with millions of
vertices and edges, i.e., two orders of magnitude larger
than previous studies. By experimenting with real-world
evolving graphs, we also show that our algorithm is
able to keep the betweenness centrality measure up
to date online, i.e., the time to update the measure is
always smaller than the inter-arrival time between two
consecutive updates.

An open-source implementation of our method is
available on GitHub.4 Inclusion in SAMOA,5 a platform
for mining big data streams [11, 12] is also planned.

2 PRELIMINARIES
Let G = (V,E) be a (directed or undirected) graph,
with |V | = n and |E| = m. Let Ps(t) denote the set of
predecessors of a vertex t on shortest paths from s to t
in G. Let �(s, t) denote the total number of shortest paths
from s to t in G and, for any v 2 V , let �(s, t | v) denote
the number of shortest paths from s to t in G that go
through v. Note that �(s, s) = 1, and �(s, t | v) = 0 if
v 2 {s, t} or if v does not lie on any shortest path from
s to t. Similarly, for any edge e 2 E, let �(s, t | e) denote
the number of shortest paths from s to t in G that go
through e. The betweenness centrality of a vertex v is the
sum over all pairs of vertices of the fractional count of
shortest paths going through v.

Definition 2.1 (Vertex Betweenness Centrality): For
every vertex v 2 V of a graph G(V,E), its betweenness
centrality V BC(v) is defined as follows:

V BC(v) =
X

s,t2V,s6=t

�(s, t | v)
�(s, t)

. (1)

Definition 2.2 (Edge Betweenness Centrality): For every
edge e 2 E of a graph G(V,E), its betweenness centrality
EBC(e) is defined as follows:

EBC(e) =
X

s,t2V,s 6=t

�(s, t | e)
�(s, t)

. (2)

Brandes’ algorithm [6] leverages the notion of dependency
score of a source vertex s on another vertex v, defined
as �s(v) =

P
t 6=s,v

�(s,t|v)
�(s,t) . The betweenness centrality

V BC(v) of any vertex v can be expressed in terms of
dependency scores as V BC(v) =

P
s 6=v �s(v). The fol-

lowing recursive relation on �s(v) is the key to Brandes’
algorithm:

�s(v) =
X

w:v2Ps(w)

�(s, v)

�(s, w)
(1 + �s(w)) (3)

The algorithm takes as input a graph G=(V,E) and
outputs the betweenness centrality V BC(v) of every

1. http://storm.apache.org
2. http://incubator.apache.org/s4
3. http://samza.apache.org
4. http://github.com/nicolas-kourtellis/StreamingBetweenness
5. http://samoa.incubator.apache.org

Input: Graph G(V,E) and edge update stream ES

Output: V BC

0[V 0] and EBC

0[E0] for updated G

0(V 0
, E

0)
Step 1: Execute Brandes’ alg. on G to create & store data

structures for incremental betweenness.
Step 2: For each update e2ES , execute Algorithm 1.

Step 2.1 Update vertex and edge betweenness.
Step 2.2 Update data structures in memory or disk

for next edge addition or removal.
Fig. 1: The proposed algorithmic framework.

v 2 V . It runs in two phases. During the first phase,
it performs a search on the whole graph to discover
shortest paths, starting from every source vertex s. When
the search ends, it performs a dependency accumulation
step by backtracking along the shortest paths discovered.
During these two phases, the algorithm maintains four
data structures for each vertex found on the way: a
predecessors list Ps[v], the distance ds[v] from the source,
the number of shortest paths from the source �s[v], and
the dependency �s[v] accumulated when backtracking at
the end of the search.

On unweighted graphs, Brandes’ algorithm uses a
breadth first search (BFS) to discover shortest paths, and
its running time is O(nm). The space complexity of the
algorithm is O(m+n). While this algorithm was initially
defined only for vertex betweenness it can be easily
modified to produce edge betweenness centrality at the
same time [7].

3 FRAMEWORK OVERVIEW
Our framework computes betweenness centrality in
evolving unweighted graphs. We assume new edges are
added to the graph or existing edges are removed from
the graph, and these changes are seen as a stream of up-
dates, i.e., one by one. Henceforth, for sake of clarity, we
assume an undirected graph. However, our framework
can also work on directed graphs by following outlinks
in the search phase and inlinks in the backtracking phase
rather than generic neighbors.

The framework is composed of two basic steps shown
in Figure 1. It accepts as input a graph G(V,E) and a
stream of edges ES to be added/removed, and outputs,
for an updated graph G0(V 0, E0), the new betweenness
centrality of vertices (V BC 0) and edges (EBC 0) for each
vertex v 2 V 0 and edge e 2 E0.

The framework uses Brandes’ algorithm as a building
block in step 1: this is executed only once, offline, before
any update. We modify the algorithm to (i) keep track
of betweenness for vertices and edges at the same time,
(ii) use additional data structures to allow for incremen-
tal computation, and (iii) remove the predecessors list
to reduce the memory footprint and make out-of-core
computation efficient.
Edge betweenness. By leveraging ideas from Brandes
[7], we modify the algorithm to produce edge between-
ness centrality scores. To compute simultaneously both
edge and vertex betweenness, the algorithm stores the
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through v. Note that �(s, s) = 1, and �(s, t | v) = 0 if
v 2 {s, t} or if v does not lie on any shortest path from
s to t. Similarly, for any edge e 2 E, let �(s, t | e) denote
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v 2 V . It runs in two phases. During the first phase,
it performs a search on the whole graph to discover
shortest paths, starting from every source vertex s. When
the search ends, it performs a dependency accumulation
step by backtracking along the shortest paths discovered.
During these two phases, the algorithm maintains four
data structures for each vertex found on the way: a
predecessors list Ps[v], the distance ds[v] from the source,
the number of shortest paths from the source �s[v], and
the dependency �s[v] accumulated when backtracking at
the end of the search.

On unweighted graphs, Brandes’ algorithm uses a
breadth first search (BFS) to discover shortest paths, and
its running time is O(nm). The space complexity of the
algorithm is O(m+n). While this algorithm was initially
defined only for vertex betweenness it can be easily
modified to produce edge betweenness centrality at the
same time [7].

3 FRAMEWORK OVERVIEW
Our framework computes betweenness centrality in
evolving unweighted graphs. We assume new edges are
added to the graph or existing edges are removed from
the graph, and these changes are seen as a stream of up-
dates, i.e., one by one. Henceforth, for sake of clarity, we
assume an undirected graph. However, our framework
can also work on directed graphs by following outlinks
in the search phase and inlinks in the backtracking phase
rather than generic neighbors.

The framework is composed of two basic steps shown
in Figure 1. It accepts as input a graph G(V,E) and a
stream of edges ES to be added/removed, and outputs,
for an updated graph G0(V 0, E0), the new betweenness
centrality of vertices (V BC 0) and edges (EBC 0) for each
vertex v 2 V 0 and edge e 2 E0.

The framework uses Brandes’ algorithm as a building
block in step 1: this is executed only once, offline, before
any update. We modify the algorithm to (i) keep track
of betweenness for vertices and edges at the same time,
(ii) use additional data structures to allow for incremen-
tal computation, and (iii) remove the predecessors list
to reduce the memory footprint and make out-of-core
computation efficient.
Edge betweenness. By leveraging ideas from Brandes
[7], we modify the algorithm to produce edge between-
ness centrality scores. To compute simultaneously both
edge and vertex betweenness, the algorithm stores the
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Scalable	Online	BC	in	Evolving	Graphs

Framework	proposed:
• maintains	both	vertex	&	edge	betweenness up-to-date	for	same	

computational	cost
• handles	both	additions	and	removals	of	vertices	and	edges	in	a	

unified	approach
• has	reduced	space	overhead	and	is	truly	scalable and	amenable	to	

real-world	deployment
• can	be	parallelized	and	deployed	on	top	of	modern	distributed,	

stream	and	parallel,	processing	engines
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System	design	for	BC	measurement
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shortest path distance. Since only one edge is added at
a time, we simply denote this difference as dd.

Depending on how large dd is, a different type of
update is needed. In particular, three cases can arise:
• dd = 0 (Proposition 3.1);
• dd = 1 (0 level rise, Section 4.1);
• dd > 1 (1 or more levels rise, Section 4.2).

The first case involves two vertices that are at the same
distance from the source vertex.

Proposition 3.1: Given two vertices u1 and u2 such that
they have the same distance from a source vertex s, and
an edge e = (u1, u2) that connects the two vertices, no
shortest path from s to any other node in the graph
passes trough the edge e, i.e., d(s, u1) = d(s, u2) =)
8t 2 V,�(s, t | e) = 0.

Proof: Omitted for brevity (see [17, 24]).
No shortest path goes through the edge, no change oc-
curs in the SPDAG, so the current source can be ignored.

In the second case, the new edge connects two vertices
whose distance from the source differs only by one
(Fig. 2a). Thus, this addition does not cause any struc-
tural change in the SPDAG, and all the distances remain
the same. However, new shortest paths can be created
due to the addition, and therefore the shortest paths and
the dependencies of the graph must be updated.

In the third and most complex case, dd > 1, structural
changes occur in the SPDAG (Fig. 2b depicts this case
after the rise of uL). In order to handle these changes
properly, we introduce the concept of pivot.

Definition 3.2 (Pivot): Let s be the current source, let
d() and d0() be the distance before and after an update,
respectively, we define pivot a vertex pV | d(s, pV ) =
d0(s, pV ) ^ 9w 2 neighbors(pV ): d(s, w) 6=d0(s, w).

Thus, a pivot is a vertex that, under an edge addition
or removal, does not change its distance from the source
s, but has neighbors that do so.

When dd > 1, we need to first compute the new dis-
tances by leveraging the pivots. Given that their distance
has not changed, we can use them as starting points
to correct the distances in the SPDAG. In the case of
addition, all the pivots are situated in the sub-dag rooted
in uL, so we can combine the discovery of the pivot with
the correction of the shortest paths. The different cases
that can arise are discussed in detail in Section 4.2.

There exists also a fourth case: the new edge connects
two previously disconnected components. This case de-
generates into the case dd = 1. Indeed, no previous
shortest path existed between the two disconnected com-
ponents, so there is no structural change in the SPDAG.

Finally, new vertices arriving in the graph are handled
simply by adding them to the source set V 0 with a zero
V BC 0. Then, for all sources, the new vertex is considered
as uL with d[uL] = d[uH ] + 1, where uH is the other
endpoint of the incoming edge (therefore dd = 1).
Edge removal. In the case of an edge (u1, u2) removed
from the graph, dd is at most one, as the two endpoints
are connected before the removal. In this case, one of the

BFS1

BFS2

BFS

δ

0s

uH

uL

δ

δ δ

δ

δδ

s

uH

pv

δ δ

δ

uL r

k

k+1

k+2

(a) (b)

Fig. 2: The red (light) edge is added/removed and either
does not cause structural changes (a), or does so (b).

two endpoints, uH , is closest to the source, and clearly
the edge (uH , uL) belongs to at least one shortest path
from the source s to uL. Therefore, the algorithm needs
to check whether uL has other shortest paths from s, not
passing trough (uH , uL). Again, there are three cases:
• dd = 0 (Proposition 3.1);
• dd = 1 and uL has other predecessors (0 level drop,

Section 4.1);
• dd = 1 and uL has no other predecessor (1 or more

levels drop, Section 4.3).
In the second case, if uL is connected to at least one

vertex u0
H such that dd(uH , u0

H) = 0, then uL will remain
at the same distance (Fig. 2a), and no structural change
occurs. Thus distances remain the same. However, some
shortest paths coming through (uH , uL) are lost, so the
betweenness centrality needs to be updated.

In the third and most complex case, structural changes
occur in the graph (Fig. 2b depicts this case before uL

drops). Also in this case we make use of pivots to correct
the distances in the SPDAG first, and subsequently adjust
the shortest paths and dependency values. However, not
all pivots will be found in the sub-dag rooted in uL

after the removal. This difference makes this case more
complicated than the addition, as some pivots cannot
be discovered while adjusting the shortest paths (e.g., if
nodes uL and r were connected). Therefore, we need to
first search and find the pivots, and then start a second
BFS from those pivots to correct the shortest paths. The
details of this case are covered in Section 4.3.

There is also the case where the edge removed discon-
nects the sub-dag rooted in uL from the rest of the graph
(or, similarly, turns uL into a singleton). In this case, the
shortest paths coming from the source, as well as the
dependencies going to the source from this component
must be removed and the betweenness adjusted. If uL is
to be removed, all its edges are iteratively removed and
the singleton is replaced with zero VBC’.

4 INCREMENTAL ADDITION AND REMOVAL
In this section we discuss the details of our framework
in the case of edge addition and removal.
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Algorithm 4: Betweenness update for addition of an
edge where uL rises one or more levels after addition.

BFS Traversal from uL:
1 LQ[d[uL]] uL; d

0[uL] = BD[s].d[uH ] + 1
2 while QBFS not empty do
3 v  QBFS ; t[v] DN ; �0[v] = 0
4 for w 2 neighbors(v) do
5 if d

0[w] + 1 == d

0[v] then �

0[v]+ = �

0[w];
6 if d

0[w] > d

0[v] and t[w] == NT then
7 t[w] DN ; d0[w]=d0[v]+1; LQ[d0[w]] w; QBFS w

8 if d

0[w] == d

0[v] and BD[s].d[w] 6= BD[s].d[v] then
9 if t[w] == NT then

10 t[w] DN ; LQ[d0[w]] w; QBFS  w

Dependency Accumulation:
11 level = |V 0|; te[e] NT , e 2 E

12 while level > 0 do
13 while LQ[level] not empty do
14 w  LQ[level]
15 for v 2 neighbors(w) do
16 if d

0[v] < d

0[w] then
17 Execute module in Alg. 3.
18 if (t[v] = UP ) and (v 6= uH or w 6= uL) then
19 �

0[v]� = ↵

20 if BD[s].d[v] == BD[s].d[w] then ↵ = 0.0
21 if BD[s].d[w] < BD[s].d[v] then
22 ↵ = BD[s].�[w]

BD[s].�[v] (1 +BD[s].�[v])
23 if (v, w) 6= (uL, uH) then EBC

0[(v, w)]� = ↵

24 if d

0[v] == d

0[w] and BD[s].d[w] 6=BD[s].d[v] then
25 Execute module in Alg. 5.
26 if w 6= s then V BC[w]+ = �

0[w]�BD[s].�[w];
27 level = level � 1;

Algorithm 5: EBC correction if endpoints were not at
the same level before the change.

1 if te[(v, w)] == NT then
2 te[(v, w)] UP ; ↵ = 0
3 if BD[s].d[w] > BD[s].d[v] then
4 ↵ = BD[s].�[v]

BD[s].�[w] (1 +BD[s].�[w])
5 if BD[s].d[w] < BD[s].d[v] then
6 ↵ = BD[s].�[w]

BD[s].�[v] (1 +BD[s].�[v])
7 EBC[(v, w)]� = ↵

and distances from the source may change. Therefore,
the vertices do not inherit the shortest paths from their
predecessors (line 3), rather, the shortest paths are com-
puted during the modified BFS.

The structural changes that can happen in the SPDAG
are depicted in Figure 3. Let us examine these cases for
a vertex x and its neighbor y. Let a sibling be a neighbor
of vertex that is at the same distance from the source.
Before the addition, x and y could be either siblings (case
1, Fig. 3) or predecessor and successor (case 2). If y is
now a predecessor of x (case 1a), the algorithm adjusts
the shortest paths of x (line 5). If x was and still is a
predecessor of y (line 6), the new edge has caused both
x and y to move closer to s by the same amount (case 2a).
In this case, we update the distance from s and insert y in
the BFS queue for further exploration (line 7). If y is now
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Fig. 3: Possible configurations of an edge before and after
an update that causes structural changes.

on the same level as x, but was not before the addition
(case 2b), y is added to the BFS for further exploration
(line 10). If y moved two levels w.r.t. x (case 2c), it will
be discovered first in the BFS after the update (line 6).

Clearly there are no structural changes in the vertices
at levels above uL (i.e., closer to the source). The possible
sub-cases examined cover all possible scenarios of how
a pair of connected vertices (and thus their edge) can be
found after the addition of the new edge. The shortest
paths and distances (�0[·], d0[·]) are updated in the way
that the original Brandes’ algorithm proposes.

In the dependency accumulation phase, the depen-
dency score of all vertices examined is updated with
the new number of shortest paths computed in the
BFS phase. This part of the algorithm is similar to the
corresponding one in Algorithm 2. However, there are
important differences in the correction of the dependency
for the edge betweenness centrality (lines 20–25, Alg. 4).
Assuming v is x and w is y, if both x and y remain at the
same relative distance from the source, the dependency
to be subtracted ↵ is calculated in line 4 of Alg. 3
(case 2a). However, if y moves closer (case 2c), then y
was a successor of x but now it is a predecessor of x.
Therefore, we need to subtract the dependency on y. The
subtracted value is adjusted by switching w with v in the
dependency accumulation formula (lines 21–22, Alg. 4).

If the endpoints of the edge were at the same level
before the addition (case 1) there is no need for correction
since no dependency was accumulated on the edge (line
20, Alg. 4). If the endpoints are now at the same level
but were not before (case 2b), the old dependency needs
to be subtracted from the betweenness of the edge. Also,
the edge is marked not to be traversed again (Alg. 5). In
Alg. 5, if w was a successor of v, the old dependency is
calculated on line 4, whereas if w was a predecessor of
v, the old dependency is calculated on line 6. The vertex
betweenness centrality is updated on line 26 of Alg. 4 by
adding the new dependency accumulated on the vertex
w and subtracting the old dependency.

In summary, all possible cases of structural changes
in the SPDAG below uL are covered by Alg. 4, which
correctly updates the betweenness scores and accompa-
nying data structures of all affected vertices and edges.
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such as Storm1, S42, Samza3, or Hadoop. Our exper-
iments test our method on graphs with millions of
vertices and edges, i.e., two orders of magnitude larger
than previous studies. By experimenting with real-world
evolving graphs, we also show that our algorithm is
able to keep the betweenness centrality measure up
to date online, i.e., the time to update the measure is
always smaller than the inter-arrival time between two
consecutive updates.

An open-source implementation of our method is
available on GitHub.4 Inclusion in SAMOA,5 a platform
for mining big data streams [11, 12] is also planned.

2 PRELIMINARIES
Let G = (V,E) be a (directed or undirected) graph,
with |V | = n and |E| = m. Let Ps(t) denote the set of
predecessors of a vertex t on shortest paths from s to t
in G. Let �(s, t) denote the total number of shortest paths
from s to t in G and, for any v 2 V , let �(s, t | v) denote
the number of shortest paths from s to t in G that go
through v. Note that �(s, s) = 1, and �(s, t | v) = 0 if
v 2 {s, t} or if v does not lie on any shortest path from
s to t. Similarly, for any edge e 2 E, let �(s, t | e) denote
the number of shortest paths from s to t in G that go
through e. The betweenness centrality of a vertex v is the
sum over all pairs of vertices of the fractional count of
shortest paths going through v.

Definition 2.1 (Vertex Betweenness Centrality): For
every vertex v 2 V of a graph G(V,E), its betweenness
centrality V BC(v) is defined as follows:

V BC(v) =
X

s,t2V,s6=t

�(s, t | v)
�(s, t)

. (1)

Definition 2.2 (Edge Betweenness Centrality): For every
edge e 2 E of a graph G(V,E), its betweenness centrality
EBC(e) is defined as follows:

EBC(e) =
X

s,t2V,s 6=t

�(s, t | e)
�(s, t)

. (2)

Brandes’ algorithm [6] leverages the notion of dependency
score of a source vertex s on another vertex v, defined
as �s(v) =

P
t 6=s,v

�(s,t|v)
�(s,t) . The betweenness centrality

V BC(v) of any vertex v can be expressed in terms of
dependency scores as V BC(v) =

P
s 6=v �s(v). The fol-

lowing recursive relation on �s(v) is the key to Brandes’
algorithm:

�s(v) =
X

w:v2Ps(w)

�(s, v)

�(s, w)
(1 + �s(w)) (3)

The algorithm takes as input a graph G=(V,E) and
outputs the betweenness centrality V BC(v) of every

1. http://storm.apache.org
2. http://incubator.apache.org/s4
3. http://samza.apache.org
4. http://github.com/nicolas-kourtellis/StreamingBetweenness
5. http://samoa.incubator.apache.org

Input: Graph G(V,E) and edge update stream ES

Output: V BC

0[V 0] and EBC

0[E0] for updated G

0(V 0
, E

0)
Step 1: Execute Brandes’ alg. on G to create & store data

structures for incremental betweenness.
Step 2: For each update e2ES , execute Algorithm 1.

Step 2.1 Update vertex and edge betweenness.
Step 2.2 Update data structures in memory or disk

for next edge addition or removal.
Fig. 1: The proposed algorithmic framework.

v 2 V . It runs in two phases. During the first phase,
it performs a search on the whole graph to discover
shortest paths, starting from every source vertex s. When
the search ends, it performs a dependency accumulation
step by backtracking along the shortest paths discovered.
During these two phases, the algorithm maintains four
data structures for each vertex found on the way: a
predecessors list Ps[v], the distance ds[v] from the source,
the number of shortest paths from the source �s[v], and
the dependency �s[v] accumulated when backtracking at
the end of the search.

On unweighted graphs, Brandes’ algorithm uses a
breadth first search (BFS) to discover shortest paths, and
its running time is O(nm). The space complexity of the
algorithm is O(m+n). While this algorithm was initially
defined only for vertex betweenness it can be easily
modified to produce edge betweenness centrality at the
same time [7].

3 FRAMEWORK OVERVIEW
Our framework computes betweenness centrality in
evolving unweighted graphs. We assume new edges are
added to the graph or existing edges are removed from
the graph, and these changes are seen as a stream of up-
dates, i.e., one by one. Henceforth, for sake of clarity, we
assume an undirected graph. However, our framework
can also work on directed graphs by following outlinks
in the search phase and inlinks in the backtracking phase
rather than generic neighbors.

The framework is composed of two basic steps shown
in Figure 1. It accepts as input a graph G(V,E) and a
stream of edges ES to be added/removed, and outputs,
for an updated graph G0(V 0, E0), the new betweenness
centrality of vertices (V BC 0) and edges (EBC 0) for each
vertex v 2 V 0 and edge e 2 E0.

The framework uses Brandes’ algorithm as a building
block in step 1: this is executed only once, offline, before
any update. We modify the algorithm to (i) keep track
of betweenness for vertices and edges at the same time,
(ii) use additional data structures to allow for incremen-
tal computation, and (iii) remove the predecessors list
to reduce the memory footprint and make out-of-core
computation efficient.
Edge betweenness. By leveraging ideas from Brandes
[7], we modify the algorithm to produce edge between-
ness centrality scores. To compute simultaneously both
edge and vertex betweenness, the algorithm stores the
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Fig. 4: MapReduce version of our framework.

Figure 4 illustrates a MapReduce adaptation of our
algorithmic framework. The graph G(V,E) and the set
of updates ES (new edges to be added and existing
edges to be removed) are replicated on all machines via
distributed cache, and loaded in memory. We generate
an input for each mapper i that represents a partition ⇧i

of the graph. Each partition is comprised of two integers
that represent the first and last ID of the range of sources
for which the particular mapper i is responsible. The data
structures BD[⇧i] created during step 1 are stored locally
on the disk of each machine.

The Map function processes all edges in ES in se-
quence and updates the betweenness centrality. For each
update, it emits key-value pairs of vertex or edge IDs
together with their partial betweenness centrality (PBC)
by source s, i.e., hid, VBCs(id)|EBCs(id)i, where id is ei-
ther a vertex or an edge identifier. All the intermediate
pairs are sent to the reducers who are responsible for
producing the final aggregated betweenness results for
all vertices and edges. Each Reduce function aggregates
the partial betweenness score of one element (vertex or
edge) in the graph. The final value of the computation is
the new betweenness score for each element of the graph
after the set of updates ES is applied.

The signatures of the functions are as follows:

Map : h⇧i, ;i ! [hid, PBCs(id)i 8id 2 G, 8s 2 ⇧i]

Reduce : hid, [PBCs(id), . . .] 8s 2 V i ! hid, BC(id)i

6 EXPERIMENTAL RESULTS
We evaluate our algorithmic framework on real and
synthetic graphs to assess its performance over Brandes’
algorithm and its ability to scale to large graphs.
Datasets. We use two types of graphs: synthetic and
real. The synthetic graphs are created with a synthetic
social graph generator [33], which produces graphs with
properties, such as degree distribution and clustering
coefficient, similar to real social graphs. The synthetic

TABLE 2: Description of the graphs used. AD: average
degree, CC: clustering coefficient, ED: effective diameter.

Dataset |V |(LCC) |E|(LCC) AD CC ED

sy
nt

he
tic 1k 1000 5895 11.8 0.263 5.47

10k 10 000 58 539 11.7 0.219 6.56
100k 100 000 587 970 11.8 0.207 7.07

1000k 1 000 000 5 896 878 11.8 0.204 7.76

re
al

-w
or

ld

wikielections 7066 100 780 8.3 0.126 3.78
slashdot 51 082 117 377 51.1 0.006 5.23

facebook 63 392 816 885 63.7 0.148 5.62
epinions 119 130 704 571 12.8 0.081 5.49

dblp 1 105 171 4 835 099 8.7 0.6483 8.18
amazon 2 146 057 5 743 145 3.5 0.0004 7.46

graphs enable us to experiment with graphs that main-
tain properties of real social graphs while being able to
freely increase their size (see Table 2).

Table 2 also reports the details of the real graphs
we use. They are taken from the KONECT collection6

and come from different domains: wiki-elections (WE for
short, election votes for Wikipedia admins), epinions (EP,
trust among Epinion users), facebook (FB, friendships
among Facebook users), slashdot (SD, replies among
Slashdot users), dblp (co-authorships among scholars),
and amazon (AMZ, product ratings by Amazon users). To
make the results comparable between real and synthetic
graphs as well as with previous works, we use the largest
connected component (LCC) of the real graphs.
Graph updates. For edge addition in the synthetic
graphs, we generate the stream of added edges ES

by connecting 100 random unconnected pairs of ver-
tices. For the real graphs, each edge has an associated
timestamp of its real arrival time, so we simply replay
them in order. For edge removal in the synthetic graphs,
we randomly select 100 existing edges to construct the
stream of removed edges ES . For real graphs, we remove
the last 100 edges that are added in each graph and
do not create a graph partition. The use of real arrival
times in graphs is an important difference from previous
studies of betweenness centrality updates. This scenario
allows us to simulate the evolution of a real system, and
thus assess the capability of our framework to update
the betweenness centrality online.
Implementation. We implement our algorithmic frame-
work in Java and use the JUNG graph library7 for basic
graph operations and maintenance. For the out-of-core
version, we store BD[·] in a single file, and read it
sequentially in memory source by source. If any update
is needed for the current source, it is performed in place
on disk rather than overwriting the whole file. This
enhancement limits the writes on disk to a minimum. In
the experiments, we compare the performance of three
versions of the framework: (1) in memory with prede-

6. http://konect.uni-koblenz.de/graphs
7. http://jung.sourceforge.net
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Fig. 4: MapReduce version of our framework.

Figure 4 illustrates a MapReduce adaptation of our
algorithmic framework. The graph G(V,E) and the set
of updates ES (new edges to be added and existing
edges to be removed) are replicated on all machines via
distributed cache, and loaded in memory. We generate
an input for each mapper i that represents a partition ⇧i

of the graph. Each partition is comprised of two integers
that represent the first and last ID of the range of sources
for which the particular mapper i is responsible. The data
structures BD[⇧i] created during step 1 are stored locally
on the disk of each machine.

The Map function processes all edges in ES in se-
quence and updates the betweenness centrality. For each
update, it emits key-value pairs of vertex or edge IDs
together with their partial betweenness centrality (PBC)
by source s, i.e., hid, VBCs(id)|EBCs(id)i, where id is ei-
ther a vertex or an edge identifier. All the intermediate
pairs are sent to the reducers who are responsible for
producing the final aggregated betweenness results for
all vertices and edges. Each Reduce function aggregates
the partial betweenness score of one element (vertex or
edge) in the graph. The final value of the computation is
the new betweenness score for each element of the graph
after the set of updates ES is applied.

The signatures of the functions are as follows:

Map : h⇧i, ;i ! [hid, PBCs(id)i 8id 2 G, 8s 2 ⇧i]

Reduce : hid, [PBCs(id), . . .] 8s 2 V i ! hid, BC(id)i

6 EXPERIMENTAL RESULTS
We evaluate our algorithmic framework on real and
synthetic graphs to assess its performance over Brandes’
algorithm and its ability to scale to large graphs.
Datasets. We use two types of graphs: synthetic and
real. The synthetic graphs are created with a synthetic
social graph generator [33], which produces graphs with
properties, such as degree distribution and clustering
coefficient, similar to real social graphs. The synthetic

TABLE 2: Description of the graphs used. AD: average
degree, CC: clustering coefficient, ED: effective diameter.

Dataset |V |(LCC) |E|(LCC) AD CC ED

sy
nt

he
tic 1k 1000 5895 11.8 0.263 5.47

10k 10 000 58 539 11.7 0.219 6.56
100k 100 000 587 970 11.8 0.207 7.07

1000k 1 000 000 5 896 878 11.8 0.204 7.76

re
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or
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wikielections 7066 100 780 8.3 0.126 3.78
slashdot 51 082 117 377 51.1 0.006 5.23

facebook 63 392 816 885 63.7 0.148 5.62
epinions 119 130 704 571 12.8 0.081 5.49

dblp 1 105 171 4 835 099 8.7 0.6483 8.18
amazon 2 146 057 5 743 145 3.5 0.0004 7.46

graphs enable us to experiment with graphs that main-
tain properties of real social graphs while being able to
freely increase their size (see Table 2).

Table 2 also reports the details of the real graphs
we use. They are taken from the KONECT collection6

and come from different domains: wiki-elections (WE for
short, election votes for Wikipedia admins), epinions (EP,
trust among Epinion users), facebook (FB, friendships
among Facebook users), slashdot (SD, replies among
Slashdot users), dblp (co-authorships among scholars),
and amazon (AMZ, product ratings by Amazon users). To
make the results comparable between real and synthetic
graphs as well as with previous works, we use the largest
connected component (LCC) of the real graphs.
Graph updates. For edge addition in the synthetic
graphs, we generate the stream of added edges ES

by connecting 100 random unconnected pairs of ver-
tices. For the real graphs, each edge has an associated
timestamp of its real arrival time, so we simply replay
them in order. For edge removal in the synthetic graphs,
we randomly select 100 existing edges to construct the
stream of removed edges ES . For real graphs, we remove
the last 100 edges that are added in each graph and
do not create a graph partition. The use of real arrival
times in graphs is an important difference from previous
studies of betweenness centrality updates. This scenario
allows us to simulate the evolution of a real system, and
thus assess the capability of our framework to update
the betweenness centrality online.
Implementation. We implement our algorithmic frame-
work in Java and use the JUNG graph library7 for basic
graph operations and maintenance. For the out-of-core
version, we store BD[·] in a single file, and read it
sequentially in memory source by source. If any update
is needed for the current source, it is performed in place
on disk rather than overwriting the whole file. This
enhancement limits the writes on disk to a minimum. In
the experiments, we compare the performance of three
versions of the framework: (1) in memory with prede-

6. http://konect.uni-koblenz.de/graphs
7. http://jung.sourceforge.net
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Figure 4 illustrates a MapReduce adaptation of our
algorithmic framework. The graph G(V,E) and the set
of updates ES (new edges to be added and existing
edges to be removed) are replicated on all machines via
distributed cache, and loaded in memory. We generate
an input for each mapper i that represents a partition ⇧i

of the graph. Each partition is comprised of two integers
that represent the first and last ID of the range of sources
for which the particular mapper i is responsible. The data
structures BD[⇧i] created during step 1 are stored locally
on the disk of each machine.

The Map function processes all edges in ES in se-
quence and updates the betweenness centrality. For each
update, it emits key-value pairs of vertex or edge IDs
together with their partial betweenness centrality (PBC)
by source s, i.e., hid, VBCs(id)|EBCs(id)i, where id is ei-
ther a vertex or an edge identifier. All the intermediate
pairs are sent to the reducers who are responsible for
producing the final aggregated betweenness results for
all vertices and edges. Each Reduce function aggregates
the partial betweenness score of one element (vertex or
edge) in the graph. The final value of the computation is
the new betweenness score for each element of the graph
after the set of updates ES is applied.

The signatures of the functions are as follows:

Map : h⇧i, ;i ! [hid, PBCs(id)i 8id 2 G, 8s 2 ⇧i]

Reduce : hid, [PBCs(id), . . .] 8s 2 V i ! hid, BC(id)i

6 EXPERIMENTAL RESULTS
We evaluate our algorithmic framework on real and
synthetic graphs to assess its performance over Brandes’
algorithm and its ability to scale to large graphs.
Datasets. We use two types of graphs: synthetic and
real. The synthetic graphs are created with a synthetic
social graph generator [33], which produces graphs with
properties, such as degree distribution and clustering
coefficient, similar to real social graphs. The synthetic

TABLE 2: Description of the graphs used. AD: average
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Dataset |V |(LCC) |E|(LCC) AD CC ED

sy
nt

he
tic 1k 1000 5895 11.8 0.263 5.47

10k 10 000 58 539 11.7 0.219 6.56
100k 100 000 587 970 11.8 0.207 7.07

1000k 1 000 000 5 896 878 11.8 0.204 7.76

re
al

-w
or

ld

wikielections 7066 100 780 8.3 0.126 3.78
slashdot 51 082 117 377 51.1 0.006 5.23

facebook 63 392 816 885 63.7 0.148 5.62
epinions 119 130 704 571 12.8 0.081 5.49

dblp 1 105 171 4 835 099 8.7 0.6483 8.18
amazon 2 146 057 5 743 145 3.5 0.0004 7.46

graphs enable us to experiment with graphs that main-
tain properties of real social graphs while being able to
freely increase their size (see Table 2).

Table 2 also reports the details of the real graphs
we use. They are taken from the KONECT collection6

and come from different domains: wiki-elections (WE for
short, election votes for Wikipedia admins), epinions (EP,
trust among Epinion users), facebook (FB, friendships
among Facebook users), slashdot (SD, replies among
Slashdot users), dblp (co-authorships among scholars),
and amazon (AMZ, product ratings by Amazon users). To
make the results comparable between real and synthetic
graphs as well as with previous works, we use the largest
connected component (LCC) of the real graphs.
Graph updates. For edge addition in the synthetic
graphs, we generate the stream of added edges ES

by connecting 100 random unconnected pairs of ver-
tices. For the real graphs, each edge has an associated
timestamp of its real arrival time, so we simply replay
them in order. For edge removal in the synthetic graphs,
we randomly select 100 existing edges to construct the
stream of removed edges ES . For real graphs, we remove
the last 100 edges that are added in each graph and
do not create a graph partition. The use of real arrival
times in graphs is an important difference from previous
studies of betweenness centrality updates. This scenario
allows us to simulate the evolution of a real system, and
thus assess the capability of our framework to update
the betweenness centrality online.
Implementation. We implement our algorithmic frame-
work in Java and use the JUNG graph library7 for basic
graph operations and maintenance. For the out-of-core
version, we store BD[·] in a single file, and read it
sequentially in memory source by source. If any update
is needed for the current source, it is performed in place
on disk rather than overwriting the whole file. This
enhancement limits the writes on disk to a minimum. In
the experiments, we compare the performance of three
versions of the framework: (1) in memory with prede-

6. http://konect.uni-koblenz.de/graphs
7. http://jung.sourceforge.net
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• 3	implementations	 (MP,	MO,	DO)
• 100	random	edges	added/removed
• real	and	synthetic	networks
• Single	 server	tests

• 8-core	Intel	Xeon	@2.4GHz,	50GB	RAM
• Hadoop	cluster,	100s	machines

• 8-core	Intel	Xeon	@2.4GHz,	24GB	RAM
• Speedup	comparison	with	Brandes’	and	3	state-of-art
• Averaged	over	10	executions	for	each	setup
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Fig. 5: Speedup of the framework’s 3 versions on syn-
thetic and real graphs executed on single machines (ad-
dition).

cessors lists (MP), (2) in memory without predecessors
lists (MO), (3) on disk without predecessors lists (DO).

Infrastructure. For the single-machine version (both
in-memory and out-of-core), we use high-end servers
with 8-core Intel Xeon @2.4GHz CPU and 50GB of
RAM each. For the parallel version, we use a Hadoop
cluster with hundreds of machines with 8-core Intel Xeon
@2.4GHz CPU and 24GB of RAM each. We report the av-
erage performance over 10 executions of the algorithms
for each experimental setup.

6.1 Speedup over Brandes’ algorithm

Predecessors list optimization. Figure 5 presents the
cumulative distribution function (CDF) of the speedup
over Brandes’ algorithm when testing the three versions
of the framework on edge addition. Each point in the
graph represents the speedup when adding one of the
100 edges in the stream (averaged over 10 runs). The
results show that removing the predecessors lists can
actually boost the performance (the MO version is always
faster than the MP version). As the algorithm does not
need to create the lists nor to maintain them, the over-
head, and thus the overall execution time, is reduced.
Related work comparison. As shown in Table 3, the
average performance of our framework is comparable to
the reported results of previously proposed techniques.
The method in [21] shows faster results in networks with
low clustering coefficient where changes do not affect
many vertices. However, in social networks with high
clustering, the method by Kas et al. [21] and especially
QUBE [25] are slow due to high cost in updating vertex
centrality (in QUBE, many vertices might be included in
the minimum union cycle to be updated).

We also compared with the method by Green et al.
[17] using a version of their code. By taking into account
implementation differences (Java vs. C), the speedups
observed are comparable to our method. However, under
limited main memory, the method by Green et al. fails to
tackle a medium-sized network like slashdot. Instead, as
demonstrated later in Table 4, our framework can handle
even larger datasets using out-of-core techniques with
small main memory footprint and significant speedups.

TABLE 3: Speedup comparison with related work.
Dataset |V | MO avg (max) [21] [25] [17]

wikivote 7k 75 (181) 3
contact 10k 75 (153) 4

UCI (fb-like) 2k 32 (90) 18
ca-GrQc 4k 31 (378) 68 2 40

ca-HepTh 8k 42 (80) 358 40
adjnoun .1k 48 (172) 20

ca-CondMat 19k 94 (395) 109
as-22july06 23k 70 (291) 61

slashdot (50GB) 51k 88 (178) X

Additionally, these past techniques compute only ver-
tex centrality, while our method computes both vertex
and edge centrality with the shown speedups.
Out-of-core performance. When BD[·] is stored on disk
(DO) rather than in memory (MO), we observe a decrease
of the speedup due to the slower access time of the
disk. Overall, the DO version is more than 10⇥ faster
than Brandes’ for the 1k and more than 30⇥ for the
10k graph (median values). The time to process a single
edge depends heavily on which parts of the graph it
connects and how many structural changes it produces.
The in-memory version is CPU bound, so this variability
is reflected in the execution time. On the other hand, the
out-of-core version is I/O bound, and the execution time
is dominated by disk access and the variability of the
CPU time spent becomes latent. In the remainder of this
section we use the DO version. Key speedup results are
summarized in Table 4.
MapReduce speedup. Figure 6(a) shows the CDF of
speedup over Brandes’ algorithm when executing the DO
version on a MapReduce cluster for addition of edges.
In the experiment, we adjust the number of mappers
so that each mapper is assigned 1k sources per graph.
Brandes’ algorithm is compared with the cumulative ex-
ecution time of our algorithm, i.e., the sum of execution
times across all mappers and reducers. By increasing the
graph size from 1k to 100k vertices, the median speedup
increases from ⇡ 10 to ⇡ 50. When increasing the graph
size to 1000k vertices, the median speedup drops to ⇡ 10.
Compared to the experiments on a single machine, there

TABLE 4: Summary of key speedup results.
Dataset Addition Removal

Min Med Max Min Med Max

1k 3 12 23 2 10 19
10k 16 34 62 2 35 155

100k 21 49 96 4 45 134
1000k 5 10 20 1 12 78

wikielections 9 47 95 1 45 92
slashdot 15 25 121 8 24 127

facebook 10 66 462 1 102 243
epinions 24 56 138 2 45 90

dblp 3 8 15 3 8 429
amazon 2 4 15 2 3 5
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[17]:	Green	et	al.,	[21]:	Kas et	al.,	[24]:	Qube

• Better	at	networks	with	high	clustering
• Better	at	memory	consumption
• Handles	vertex	&	edge	betweenness simultaneously
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Fig. 6: Speedup of DO version on synthetic/real graphs executed on a MapReduce cluster (additions/removals).

is an increase in the variability of the framework’s per-
formance when accessing the disks on the MapReduce
cluster. This effect is partly due to contention on disk
access on the cluster caused by concurrent jobs, as well
as increased computation load per machine and source.
Overall, the use of parallel execution leads to improved
speedups for larger graphs that would be impossible to
process on a single machine. As an additional benefit,
we also get reduced wall-clock time.

Figure 6(b) shows the CDF of speedup over Brandes’
algorithm on a MapReduce cluster for removal of edges.
The setup is similar to the previous experiment. By
increasing the graph size from 1k to 100k vertices, the
median speedup increases from ⇡ 10 to ⇡ 45. When
increasing the graph size to 1000k vertices, the median
speedup drops to ⇡ 12. In this case, the speedup is
slightly higher than when adding edges, because the
removal of edges reduces the shortest paths between
vertices and causes slightly less computational load.
Real graph structure. Figures 6(c) and (d) show the CDF
of speedup over Brandes’ algorithm for the real graphs
when adding or removing edges, respectively. Also in
this case we adjust the number of mappers so that each
mapper is assigned 1k sources per graph.

In the edge addition, facebook exhibits the highest
variability with a median speedup of ⇡ 66. In the edge
removal, dblp exhibits higher variability than facebook
with a median speedup of ⇡ 8. When adding edges
on slashdot, which has a number of edges similar to
wikielections but fewer vertices, our framework exhibits
lower variability and smaller maximum speedup than on
wikielections. It also performs better on facebook than
slashdot, both in addition and removal of edges, even
if the two graphs have approximately the same number
of vertices. One reason may lie in the higher clustering
coefficient of wikielections and facebook, which reduces
the number of structural changes upon update.

In support to our hypothesis, for amazon we observe
a low median speedup of ⇡ 4. The low performance
is due to the structural properties of this graph: very
low clustering coefficient and high diameter lead to
many structural changes upon edge addition or removal,
and thus higher computational load. For example, in
both addition and removal of edges, we observe that
on dblp, which is of the same order of magnitude as
amazon but with a much higher clustering coefficient,
our method achieves about double the speedup than
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Fig. 7: (a-b) Computation time under increasing number
of mappers. (c-d) Computation time under constant ratio
of workload over mappers.
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Fig. 8: Inter-arrival time of facebook and slashdot edges
and update times for betweenness centrality.
on amazon. We conjecture that performance on a larger
graph is tightly connected with its structural properties,
the longer disk access time, and more computational load
per source (more vertices to be traversed). Exploring the
connections between algorithm’s performance and graph
properties is an interesting path for future investigation.

6.2 Scalability for online updates
Figures 7(a-b) analyze the strong scaling properties of
the algorithm in the case of edge addition. In these
experiments we keep the workload fixed and increase
the parallelism level. By employing a larger number of
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• Computation	decreases	almost	linearly	
regardless	of	workload	and	graph	size

• Workload/mappers	”static”	->	
computation	time	”static”
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is an increase in the variability of the framework’s per-
formance when accessing the disks on the MapReduce
cluster. This effect is partly due to contention on disk
access on the cluster caused by concurrent jobs, as well
as increased computation load per machine and source.
Overall, the use of parallel execution leads to improved
speedups for larger graphs that would be impossible to
process on a single machine. As an additional benefit,
we also get reduced wall-clock time.

Figure 6(b) shows the CDF of speedup over Brandes’
algorithm on a MapReduce cluster for removal of edges.
The setup is similar to the previous experiment. By
increasing the graph size from 1k to 100k vertices, the
median speedup increases from ⇡ 10 to ⇡ 45. When
increasing the graph size to 1000k vertices, the median
speedup drops to ⇡ 12. In this case, the speedup is
slightly higher than when adding edges, because the
removal of edges reduces the shortest paths between
vertices and causes slightly less computational load.
Real graph structure. Figures 6(c) and (d) show the CDF
of speedup over Brandes’ algorithm for the real graphs
when adding or removing edges, respectively. Also in
this case we adjust the number of mappers so that each
mapper is assigned 1k sources per graph.

In the edge addition, facebook exhibits the highest
variability with a median speedup of ⇡ 66. In the edge
removal, dblp exhibits higher variability than facebook
with a median speedup of ⇡ 8. When adding edges
on slashdot, which has a number of edges similar to
wikielections but fewer vertices, our framework exhibits
lower variability and smaller maximum speedup than on
wikielections. It also performs better on facebook than
slashdot, both in addition and removal of edges, even
if the two graphs have approximately the same number
of vertices. One reason may lie in the higher clustering
coefficient of wikielections and facebook, which reduces
the number of structural changes upon update.

In support to our hypothesis, for amazon we observe
a low median speedup of ⇡ 4. The low performance
is due to the structural properties of this graph: very
low clustering coefficient and high diameter lead to
many structural changes upon edge addition or removal,
and thus higher computational load. For example, in
both addition and removal of edges, we observe that
on dblp, which is of the same order of magnitude as
amazon but with a much higher clustering coefficient,
our method achieves about double the speedup than
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Fig. 7: (a-b) Computation time under increasing number
of mappers. (c-d) Computation time under constant ratio
of workload over mappers.
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on amazon. We conjecture that performance on a larger
graph is tightly connected with its structural properties,
the longer disk access time, and more computational load
per source (more vertices to be traversed). Exploring the
connections between algorithm’s performance and graph
properties is an interesting path for future investigation.

6.2 Scalability for online updates
Figures 7(a-b) analyze the strong scaling properties of
the algorithm in the case of edge addition. In these
experiments we keep the workload fixed and increase
the parallelism level. By employing a larger number of



Online	updates	of	BC

15

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, APRIL 2014 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

C
D

F

(a)Speedup(additions,synthetic)

1k
10k

100k
1000k

 1  10  100

(b)Speedup(removals,synthetic)

 1  10  100

(c)Speedup(additions,real)

we
fb
sd
ep

dblp
amz

 1  10  100

(d)Speedup(removals,real)

Fig. 6: Speedup of DO version on synthetic/real graphs executed on a MapReduce cluster (additions/removals).

is an increase in the variability of the framework’s per-
formance when accessing the disks on the MapReduce
cluster. This effect is partly due to contention on disk
access on the cluster caused by concurrent jobs, as well
as increased computation load per machine and source.
Overall, the use of parallel execution leads to improved
speedups for larger graphs that would be impossible to
process on a single machine. As an additional benefit,
we also get reduced wall-clock time.

Figure 6(b) shows the CDF of speedup over Brandes’
algorithm on a MapReduce cluster for removal of edges.
The setup is similar to the previous experiment. By
increasing the graph size from 1k to 100k vertices, the
median speedup increases from ⇡ 10 to ⇡ 45. When
increasing the graph size to 1000k vertices, the median
speedup drops to ⇡ 12. In this case, the speedup is
slightly higher than when adding edges, because the
removal of edges reduces the shortest paths between
vertices and causes slightly less computational load.
Real graph structure. Figures 6(c) and (d) show the CDF
of speedup over Brandes’ algorithm for the real graphs
when adding or removing edges, respectively. Also in
this case we adjust the number of mappers so that each
mapper is assigned 1k sources per graph.

In the edge addition, facebook exhibits the highest
variability with a median speedup of ⇡ 66. In the edge
removal, dblp exhibits higher variability than facebook
with a median speedup of ⇡ 8. When adding edges
on slashdot, which has a number of edges similar to
wikielections but fewer vertices, our framework exhibits
lower variability and smaller maximum speedup than on
wikielections. It also performs better on facebook than
slashdot, both in addition and removal of edges, even
if the two graphs have approximately the same number
of vertices. One reason may lie in the higher clustering
coefficient of wikielections and facebook, which reduces
the number of structural changes upon update.

In support to our hypothesis, for amazon we observe
a low median speedup of ⇡ 4. The low performance
is due to the structural properties of this graph: very
low clustering coefficient and high diameter lead to
many structural changes upon edge addition or removal,
and thus higher computational load. For example, in
both addition and removal of edges, we observe that
on dblp, which is of the same order of magnitude as
amazon but with a much higher clustering coefficient,
our method achieves about double the speedup than
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of mappers. (c-d) Computation time under constant ratio
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on amazon. We conjecture that performance on a larger
graph is tightly connected with its structural properties,
the longer disk access time, and more computational load
per source (more vertices to be traversed). Exploring the
connections between algorithm’s performance and graph
properties is an interesting path for future investigation.

6.2 Scalability for online updates
Figures 7(a-b) analyze the strong scaling properties of
the algorithm in the case of edge addition. In these
experiments we keep the workload fixed and increase
the parallelism level. By employing a larger number of

• Online	detection	of	top	(or	changing)	BC	vertices	and	
edges	for	better	system	design
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TABLE 5: Edges missed and average delay vs. scaling.
Dataset mappers % missed avg. delay (s)

slashdot 1 44.565 257.9
slashdot 10 1.087 32.4
facebook 1 69.697 1061.1
facebook 10 19.192 96.6
facebook 50 3.030 8.6
facebook 100 1.010 5.5

mappers, the overall execution time decreases almost
linearly regardless of the workload (i.e., 100 vs. 300
added edges) and graph size (i.e., 10k vs. 100k). As
expected, our algorithm is embarrassingly parallel and
shows very good scalability properties.

Figures 7(c-d) explore the weak scaling properties of
the algorithm in the case of edge addition. In these
experiments we keep the workload per processing unit
fixed, and we increase the workload and parallelism
level proportionally. The workload for the system is
represented by the number of edges updates within a
period of time. To keep the ratio of workload per map-
per constant, we increase the number of edges updates
proportionally to the number of mappers. As shown in
the figures, the total execution time remains constant
at different levels of ratio (e.g., 1 vs 3, or 10 vs. 30)
regardless of the parallelism level. These results show
that our parallel algorithmic framework can scale to
larger workload simply by adding more machines.

Figure 8 demonstrates the online capabilities of the
algorithm on two real graphs. The figure shows the inter-
arrival time of new edges and the time needed by the
framework to produce updated betweenness values. In
Table 5 we report the fraction of edges for which the
framework was unable to produce updates on time and
the corresponding average delay. For slashdot, the frame-
work manages to produce online updates for 98.91% of
edges with 10 mappers. For facebook instead, the arrival
rate is higher and 10 machines are not enough. However,
the scalability of our algorithm allows to simply use
more machines to decrease the response time of the
system. Thus, with 100 mappers, the system can produce
online updates for 98.99% of edges.

6.3 Use-case: Girvan-Newman community detection
Our framework allows a faster update of the between-
ness of edges, thus enabling several applications in-
cluding community detection with the Girvan-Newman
method [15]. This method relies primarily on the com-
putation of the betweenness of all edges. It iteratively
removes the edge with the highest centrality to create
disconnected components. The procedure is repeated
until no edges remain, thus enabling the construction of
a hierarchy of communities. In practice, this algorithm
has been abandoned due to the high cost incurred from
the recalculation of the betweenness on the modified
graph. However, our framework allows a faster update
of betweenness by taking into account only the affected
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Fig. 9: Girvan-Newman: continuous removal of edge
with highest betweenness and re-computation on syn-
thetic graphs.

parts of the graph, thus attaining an order of magnitude
faster execution over Brandes when running the Girvan-
Newman algorithm on a single machine (Figure 9).

7 CONCLUSIONS
The computational complexity of most existing graph
algorithms makes them impractical in nowadays massive
and dynamic networks. In order to scale graph analysis
to real-world applications and to keep up with their
highly dynamic nature, we need to devise new ap-
proaches specifically tailored for modern parallel stream
processing engines that run on clusters of shared-nothing
commodity hardware.

In this paper we introduce an algorithmic framework
for computing betweenness centrality incrementally in
large evolving graphs where edges and vertices are
added and removed. Our experimental results demon-
strate that our framework is capable of scaling-out to a
large number of machines without additional overhead.
This feature allows it to process graphs whose size is or-
ders of magnitude larger than what previously reported
in the literature.

Moreover, our method shows very good scale-up prop-
erties, which lead to an almost linear decrease of the exe-
cution time needed to update the betweenness centrality
on parallel systems. As a result, our method is able to
keep up with the incoming rate of updates in large real-
world graphs and in an online fashion.

The scalability achieved by our framework opens the
doors to new applications for real-world networks. For
instance, our framework can be exploited for online
detection and prediction of emerging leaders and com-
munities in social networks.
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Research	extensions	&	improvements

• Exact	solutions
• Skip	unmodified	parts	of	graph,	different	algorithmic	constructions,	…

• Approximations
• Sampling,	batches,	hypergraph	sketches,	…

• Applications
• Spam	detection,	attacks	in	bee	colonies,	…
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ACM	SIGMOD	2015.
*	N.	Ruchansky,	F.	Bonchi,	D.	García-Soriano,	F.	Gullo,	N.	Kourtellis,	To	Be	Connected,	or	Not	to	Be	Connected:	
That	is	the	Minimum	 Inefficiency	Subgraph	 Problem.	ACM	CIKM	2017.



Application:	Minimum	Wiener	Connector
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Infected	patients:	how	did	it	spread?
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Proteins:	what	connects	them?
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Ads:	Who	else	should	be	displayed	to?
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Terrorists:	Who	else	was	involved	in	the	attack?
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Minimum	Wiener	Connector	Problem

• Find	the	connected	subgraph	containing	and	minimizing	the	Wiener	
Index	(the	sum	of	pairwise	shortest	distances)	between	a	set	of	query	
vertices	Q:

• NP-hard	to	find	the	optimal	such	connector
• Devised	a	constant	factor	approximation	algorithm
• runs	in	Õ(|Q||E|)
• parameter-free

24

The Minimum Wiener Connector Problem 
(SIGMOD 2015)

Our proposal: find the connected subgraph  containing     and 
minimizing the Wiener Index (the sum of pairwise distances)

• Returns smaller and denser subgraphs
No matter whether the query nodes belong to the same community or not

• Add “important” nodes (high centrality)
• Parameter-free



Example:	Karate	Club
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23

Same Community

Different Communities
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Same Community

Different Communities

Query	nodes	 in	same	community Query	nodes	 from	different	communities



Smaller,	denser	and	more	central	vertices
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Smaller, denser, and more central vertices



Summary	of	results

• Finding	a	connector	for	a	set	of	query	nodes	in	a	graph	is	an	interesting	and	relevant	
problem
• Wiener	Index	is	the	sum	of	shortest-path	distances,	which	is	intuitive	graph	measure	
of	closeness
• Constant	factor	approximation	algorithm	that	runs	in	Õ(|Q||E|)

• Parameter-free
• Returns	small	and	dense	subgraphs

• Easy	to	visualize	and	explain
• Fast	to	compute
• No	matter	whether	the	query	nodes	belong	to	the	same	community	or	not
• Adds	“important”	nodes	(high	centrality)	while	optimizing	distances	between	all	added	nodes

• For	query	nodes	across	different	communities:
• Connector	contains	nodes	that	span	structural	holes	(bridges	between	communities)
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Extension:	Relaxed	Connector	Problem

• Previously,	we	considered	the	question	of	the	form:
• Summarize	the	relationships	that	exist	among	among	all	query	vertices

• Wiener	Connector	gave	us	a	small,	informative	answer
• Another	type	of	question	can	be:
• Summarize	the	relationships	that	may	exist	among	all,	or	parts	of	query	vertices

28



Desired	properties	of	relaxed	solution

• Parsimonious	vertex	addition
• Vertices	should	be	added	iff they	help	form	a	more	cohesive	subgraph	

• Outlier	Tolerance
• Query	vertices	which	are	far	from	others	should	remain	disconnected	

• Multi-community	awareness
• If	the	query	vertices	span	multiple	communities,	connectedness	should	not	
be	imposed	among	them
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Minimizing	Network	Inefficiency

• Find	the	relaxed	connected	subgraph	that	minimizes	the	network	
inefficiency	among	a	set	of	query	vertices	Q:

• NP-hard	to	find	the	optimal	such	relaxed	connector
• Parameter-free

30

Minimize Network Inefficiency

Given a graph G=(V,E), we define its inefficiency as:

Note:

Problem statement and hardness



Proposed	Greedy	Algorithm

1. Start	with	a	(Wiener?)	connector	for	Q
2. Remove	one	vertex	at	a	time	until	Q	is	disconnected
• Note:	Demands	recomputationof	pairwise	shortest	paths	within	intermediate	
solutions

3. Choose	the	intermediate	solution	that	minimizes	I(G)
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Example:	Brain	Co-Activation	Network

32

Brain Co-activation Network

Centerpiece Subgraph Cocktail PartyMinimum Wiener Connector

Brain Co-activation Network

Bump Hunting MDL-based Minimum 
Inefficiency

query vertices

extra vertices

• 638	vertices	(cortical	areas)
• 18625	edges	(functional	associations)

• memory	and	motor	function	 (blue	vertices)
• emotions	 (yellow	vertices)
• visual	processing	(red	vertices)
• green	vertices	are	added	to	produce	solution



Shortest-paths	framework	on	evolving	graphs

1. Inputted	graphs	are	dynamic
• Need	to	update	shortest	paths	for	re-computing	full	connector

2. Re-computation	of	shortest	paths	for	the	relaxed	solution
• Nodes	sequentially	removed	->	”dynamic”	subgraph	for	study

3. Estimated	shortest	path	distances	(via	oracles)
• Oracles	need	to	be	updated	(landmarks,	etc.)

4. Parallelization	 of	computation
• Shortest	path	summaries	computed	faster	and	efficiently
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Load	Balancing	of	Skewed	Workloads:	PKG*

34

*	MAU	Nasir,	G.	De	Francisci Morales,	D.	Garcia-Soriano,	N.	Kourtellis,	M.	Serafini.	Partial	Key	Grouping:	
Load-Balanced	Partitioning	of	Distributed	Streams.	IEEE	ICDE	2015
*	MAU	Nasir,	G.	De	Francisci Morales,	N.	Kourtellis,	M.	Serafini.	When	Two	Choices	Are	not	Enough:	
Balancing	at	Scale	in	Distributed	Stream	Processing.	IEEE	ICDE	2016



Data	Distributions:	Usually	skewed!

• Example	Domains
• Social	Networks
• Web
• Economy
• Biology

• Example	metrics
• Centrality:	degree,	betweenness,	closeness

• Skewed	Distribution
• Power-law
• Zipf Distribution
• Log	Normal

35

Scale-free	network



Computing	on	Stream	Processing	Engines

• Online	Machine	Learning
• Real	Time	Query	Processing
• Graph	Mining
• Continuous	Computation

• Streaming	Applications	->	DAGs
• Heavily	depended	on	key	distribution
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Stream	Grouping

• Key	or	Fields	Grouping
• Hash-based	assignment
• Stateful operations,	e.g.,	page	rank,	degree	count
• Efficient	Routing
• Load	Imbalance

• Shuffle	Grouping
• Round-robin	assignment
• Stateless	operations,	e.g.,	data	logging,	OLTP
• Load	Balance
• Additional	Memory
• Additional	Aggregation	phase

• All	Grouping
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Possible	solution	to	imbalance

• Dynamic	load	rebalancing
• detect	load	imbalance
• perform	data	migration

• Challenges
• How	often	to	check	the	load	imbalance
• Migration:	not	directly	supported	in	DSPEs	+	requires	modifications
• State	management	for	stateful operation
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Partial	Key	Grouping	&	Power	of	2	choices	(POTC)

• Balls-and-bins	problem
• For	each	ball,	pick	2	bins	uniformly	at	random
• Assign	the	ball	to	least	loaded	of	the	2	bins
• Bounded	imbalance	in	bins

• PKG	Algorithm
ÞBins=workers
ÞSplit	each	key	into	2	workers
ÞEstimate	load	on	workers

• Benefits:
• Decentralized
• Stateless
• Handles	Skew	well
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Analysis

• Problem	Formulation
• n workers	->	bins
• keys	ki ε K	->	colors
• m	messages	->	colored	balls
• d	->	number	of	options	for	each	ball	(or	message)

• Minimize	the	difference	between	maximum	and	average	workload
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Analysis

• Key	Distribution
• We	pick	each	key	kiε K	with	probability	pi	from	the	distribution	D,	where								
p1 ≥	p2 ≥	p3 ….

• Maximum load proportional to most frequent key (with p1)

• If p1 > 2/n the expected imbalance will be lower bounded by
I(m)	=	(p1	/2	– 1/n)	m
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Analysis

• Assume a key distribution D with maximum probability p1 ≤ 2/n. Then
the imbalance after m steps of Greedy-d process satisfies, with
probability at least 1 – 1/n,
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Analysis
• An	example	with	four	workers

• In	ideal	scenario,	each	worker	should	handle	25%	of	
the	keys

• We	need	to	consider	three	cases:	
• When	p1	=	2/4	=	0.5
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Analysis
• An	example	with	four	workers

• In	ideal	scenario,	each	worker	should	handle	25%	of	the	
keys

• We	need	to	consider	three	cases:	
• When	p1	=	2/4	=	0.5
• When	p1	> 0.5
• When	p1	< 0.5
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Applications

• Most	algorithms	that	use	Shuffle	Grouping	can	be	expressed	using	
Partial	Key	Grouping	to	reduce:
• Memory	footprint
• Aggregation	overhead

• Algorithms	that	use	Key	Grouping	can	be	rewritten	to	achieve	load	
balance

46



Examples

• Naïve	Bayes	Classifier

• Streaming	Parallel	Decision	Trees

• Heavy	Hitters	and	Space	Saving	
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Naïve	Bayes	Classifier

• Counts	co-occurrences	of	each	feature	and	class	value

• Key	Grouping
• Vertical	Parallelism:	each	feature	is	tracked	by	single	worker	process

• Shuffle	Grouping
• Horizontal	Parallelism:	each	feature	is	tracked	by	all	worker	processes

• Partial	Key	Grouping
• Each	feature	is	tracked	by	exactly	two	processes
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Stream	Groupings:	A	(new)	summary
Stream Grouping Pros Cons

Key	Grouping - Scalable - Load	Imbalance

Shuffle	Grouping - Load	Balance - Memory Overhead
- Aggregation	O(W)

Partial Key	Grouping - Scalable
- Load Balance
- Memory	Cost

- Aggregation	O(1)

49



Experimental	Questions

• How does local estimation compare to a global oracle?
• How	robust is	Partial	Key	Grouping	in	skew?
• How does PKG perform on a real deployment on Apache Storm?
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Metric:	Load	Imbalance

• The	difference	between	the	maximum	and	the	average	load	of	the	
workers	at	time	t
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Effect	of	Key	Splitting
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Wikipedia	(WP) Twitter	(TW)
Workers



Local	Load	Estimation
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Robustness	in	drift

54

• Changing	trends	in	data:	cashtags
• Used	in	the	stock	market	to	identify	a	publicly	traded	

company:	e.g.,	$AAPL	for	Apple
• Skewed	load	at	source:	graph	metrics	for	social	networks
• Test	different	data	distribution	at	the	sources

TABLE III: DEFAULT PARAMETERS FOR THE ALGORITHMS.

Parameter Description Values

W Number of workers 5, 10, 20, 50, 100, 1000
S Number of sources 5, 10, 15, 20

B(W) Heterogeneity 1, 2, . . . , 100
s
k

Service time ZF z = {0.1, . . . , 3.0}
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Fig. 3: Frequency of tweets for the top 5 tickers in CT. The most
frequent keys change throughout time.

periodically to the downstream operator. Such applications are
often represented in databases as select, average, count and
max queries. For the stateless case, each worker sends a request
to a graph database, which returns the result after executing
the two-hop neighborhood count query for each key.

The stream is composed of timestamped keys that are read
by multiple independent sources (S). The sources forward
the received keys to the worker (W) downstream. Our goal
is to simulate three type of behaviors: skew in the input
stream distribution, skew in the service time for each tuple
and heterogeneity in the cluster. During the executions, we
ensure that the computations at the workers are the expensive
part of the DAG. Thus, the workers are the bottleneck in the
DAG and the focus for the load balancing.
Metrics. Table IV defines the metric used for evaluation of
the performance of different algorithms.
Algorithms. Table II defines the notations used for different al-
gorithm, while Table III defines values of different parameters
that we use for the experiments. Unlike the algorithms in Ta-
ble II, other related load balancing algorithms [6, 8, 9, 29, 30]
require the DSPE to support operator migration. Many DSPEs,
such as Apache Storm, do not support migration, so we omit
these algorithms from the evaluation.

B. Experimental Results

Simulation. Q1: In the first experiment, we assume a homoge-
neous cluster and process the tuples with service time drawn
from a uniform distribution. We select WP stream datasets
and evaluate the performance of KG, CH, PKG, SG, and CG
and partition the stream on 10 workers. The distribution of
the input stream is defined by the timestamps for each of the
dataset. We define the capacity of machines in a way that the
work can be equally distributed using both PKG and SG. This
allow us to study the difference between KG and CG. For CG,

TABLE IV: METRIC USED FOR EVALUATION OF THE ALGORITHMS.

Metric Description

Imbalance Difference between the maximum and
the average resource utilization.

CPU Utilization CPU consumption (%).
Resource Utilization Ratio between the queue length and

the capacity of the worker.

Execute Latency Difference between the �
k

and the �
k

.
Throughput Number of tuples processed per second.

each worker monitors its queue length, as it is a good indicator
for imbalance for this experiment. We report the difference
between the maximum and the average value for each metric
over time.

Figure 4 reports the resource utilization, input queue length,
number of finished tasks and average execute latency. Results
show that KG and CH generate longer queues on some of
the worker, which increases the average waiting time. This
behavior is due to the fact that these schemes use hash based
partitioning, which always allocates each key to the same
worker. This allocation results in creating skew at the workers,
which results in imbalance. On the other hand, PKG and SG are
able to handle this skewness by spreading the keys across the
workers. Experiment shows that CG adapts nicely to the worker
capacities and reduces the workload of overloaded worker. In
particular, CG reduces the long queue at the overloaded worker,
which directory translates into improving resource utilization,
number of finished tasks and the execute latency. As KG,
CH and CG perform hash-based partitioning the difference
between the maximum and the average load of the workers
is proportional to the frequency of the most frequent key.

In the next experiment, we again assume a homogeneous
cluster, however introduce the skew in service time for each
tuple. For the skew, we leverage the ZF distribution with skew
z = 1.0. We select WP stream datasets and evaluate the
performance of KG, CH, PKG, SG, and CG and partition the
stream on 10 workers. The distribution of the input stream is
defined by the timestamps for each of the dataset. We define
the capacity of machines in a way that the work can be equally
distributed using both PKG and SG. This allow us to study the
difference between KG and CG. For CG, each worker monitors
its total service time of the tuples pending in the queue, as
it is a good indicator for imbalance for this experiment. We
report the difference between the maximum and the average
value for each metric over time.

Figure 5 reports the resource utilization, input queue length,
number of finished tasks and average execute latency. Similar
to previous experiment, results show that KG and CH generate
longer queues on some of the worker, which increases the
average waiting time. This allocation results in creating skew
at the workers, which results in imbalance. On the other hand,
PKG and SG are able to handle this skewness by spreading the
keys across the workers. However, in this experiment PARTIAL
KEY GROUPING and CG also induce the input queue. Exper-
iment shows that CG adapts nicely to the worker capacities



Robustness	in	drift
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Robustness:	Uniform	vs.	Skewed	distribution
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Real	deployment:	Apache	Storm
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What’s	next?

• Novel	metrics	to	capture	graph	dynamics
• Speed	/	acceleration	of	change
• Change:	nodes/edges/weights

• Graph	dynamics	considered
• Time	granularity
• Graph	entity	granularity	(node/edge/weight	level,	community/cluster	level,	...)

• Novel	systems	for	graph	mining
• Distributed	and	parallel	stream	processing
• Real-time	constraints

• Applications
• Time-critical	constraints
• Predictions
• Recommendations

58



Shortest	paths	in	evolving	graphs	and	
imposed	system	workload	imbalance
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