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Jelefonica

Telefonica Research

e Scientific group created in 2006, located in Barcelona, Spain
* 14+ PhDs, PhD students, interns,...

* Publishing to academic venues + patents for IP of TEF

* Participating in EU and national projects

* Internal innovation projects

Networking Machine
& Systems Learning




Outline

* Scalable Online Betweenness Centrality in Evolving Graphs
e Application: Minimum Wiener & Relaxed Connector Problem
* Load Balancing of Skewed Workloads: Partial Key Grouping



Scalable Online Betweenness Centrality in
Evolving Graphs™

*N. Kourtellis, G. De Francisci Morales and F. Bonchi. Scalable Online Betweenness Centrality in Evolving Graphs.
|EEE Transactions on Knowledge and Data Engineering, 27(9), Sep. 2015

*N. Kourtellis, G. De Francisci Morales and F. Bonchi. Scalable Online Betweenness Centrality in Evolving Graphs.
|IEEE ICDE 2016



Graph Mining

* Graphs are everywhere!
* Online social networks, mobile call networks, CQA networks, web networks...

* They change over time!
* New vertices and edges added
e Old vertices and edges removed
* Weights changing

* Graph properties reveal potentials of network processes
* Diffusion, search, important network elements, etc.

 Studying on dynamic graphs: challenging... depending on the metric
7How to measure exact betweenness centrality online in dynamic graphs?




BC: Betweenness Centrality

* Measures how much a vertex lies on the shortest paths of other vertices

* O(nm) in unweighted graphs, O(n%logn+nm) in weighted graphs

* High BC vertices (edges)

* Controlcommunication between distant vertices
* Allocate resources for routing, content dissemination, malware detection
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Scalable Online BC in Evolving Graphs

Framework proposed:

maintains both vertex & edge betweenness up-to-date for same
computational cost

handles both additions and removals of vertices and edges in a
unified approach

has reduced space overhead and is truly scalable and amenable to
real-world deployment

can be parallelized and deployed on top of modern distributed,
stream and parallel, processing engines



System design for BC measurement

No structural changes

Structural changes
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After Addition

After Deletion

case 1

(b)

'

(d)

>

(e)

()




Parallelization on Hadoop cluster

1. Send to distributed cache:
a. G(V,E): edge-list
b. E;={set of updates}

2. Produce ranges 1 and map machines

n,: {0, (|V'[/p)-1}
Mapper 1

Y

1. Execute Brandes in I,

3. for(edge in Eg){
a. Read BD[M,] from disk
b. Execute Algorithm 1in I,
c. Update BD'[,] on disk

My {(p-2)*(1V'[/p), (1V']-1)}
Mapper p —

G,E| -
2. Store partial BD[IM,] on disk |™

" | 3. for(edge in Eg){

1. Execute Brandes in M, |G,Es
2. Store partial BD[I'Ip] on disk

a. Read BD[MN ] from disk
b. Execute Algorithm 1in
c. Update BD'[IT,] on disk

Emit 1:

<i, VBC'(N,)> Reducer

Emit p:

<(u,v), EBC'(M,)>

1. Group on vertex/edge id
2. Sum VBC'(MN) & EBC'(N)
3. Store VBC'(M) & EBC'(N)

<i, VBC'(M,)>
<(u,v), EBC'(M)>

Map : <HZ7
Reduce :

) — [{id,PBCs(id)) Vid € G, Vs € 11;]
(id, [PBCs(id),...] Vs € V) — (id, BC(id))



Experimental Setup

Dataset |V|(LCC) |E|(LCC) AD CC ED

I 1k 1000 5895 11.8 0.263 5.47
Q@ 10k 10 000 58539 11.7 0219 6.56
€ 100k 100000 587970 11.8 0.207 7.07
» 1000k 1000000 5896878 11.8 0.204 7.76
wikielections 7066 100780 83 0.126 3.78
©  slashdot 51082 117377 51.1 0.006 5.23
S facebook 63392 816885 63.7 0.148 5.62
7 epinions 119130 704571 12.8 0.081 5.49
& dolp 1105171 4835099 8.7 0.6483 8.18
amazon 2146057 5743145 3.5 0.0004 7.46

3 implementations (MP, MO, DO)
100 random edges added/removed
real and synthetic networks
Single server tests
e 8-core Intel Xeon @2.4GHz, 50GB RAM
Hadoop cluster, 100s machines
e 8-core Intel Xeon @2.4GHz, 24GB RAM
Speedup comparison with Brandes’ and 3 state-of-art
Averaged over 10 executions for each setup



Key performance results

Dataset | |V| | MO avg (max) | [21] [24] [17]

wikivote | 7k 75 (181) 3
contact | 10k 75 (153) 4
UCI (fb-like) | 2k 32 (90) 18

ca-GrQc | 4k 31 (378) 68 2 40
ca-HepTh | 8k 42 (80) 358 40
adjnoun | .1k 48 (172) 20
ca-CondMat | 19k 94 (395) 109
as-22july06 | 23k 70 (291) 61
slashdot (50GB) | 51k 88 (178) X

[17]: Green et al., [21]: Kas et al., [24]: Qube

Dataset Addition Removal
Min Med Max | Min Med Max
1k 3 12 23 2 10 19
10k 16 34 62 2 35 155
100k 21 49 96 4 45 134
1000k 5 10 20 1 12 78
wikielections 9 47 95 1 45 92
slashdot 15 25 121 8 24 127
facebook 10 66 462 1 102 243
epinions 24 56 138 2 45 90
dblp 3 8 15 3 8 429
amazon 2 4 15 2 3 5

e Better at networks with high clustering
e Better at memory consumption

 Handles vertex & edge betweenness simultaneously
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System Scalability
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Online updates of BC

Inter-arrival time (hrs)

* Online detection of top (or changing) BC vertices and
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Application: Girvan-Newman Communities

10° 10’ 10° 10°
Top betweenness edges removed




Research extensions & improvements

* Exact solutions
» Skip unmodified parts of graph, different algorithmic constructions, ...

* Approximations

* Sampling, batches, hypergraph sketches, ...
* Applications

* Spam detection, attacks in bee colonies, ...



Application:
Minimum Wiener & Relaxed Connector Problem™

* N. Ruchansky, F. Bonchi, D. Garcia-Soriano, F. Gullo, N. Kourtellis, The minimum wiener connector problem.

ACM SIGMOD 2015.
* N. Ruchansky, F. Bonchi, D. Garcia-Soriano, F. Gullo, N. Kourtellis, To Be Connected, or Not to Be Connected:

That is the Minimum Inefficiency Subgraph Problem. ACM CIKM 2017.



Application: Minimum Wiener Connector




Infected patients: how did it spread?



Proteins: what connects them?



Ads: Who else should be displayed to?



Terrorists: Who else was involved in the attack?



Minimum Wiener Connector Problem

* Find the connected subgraph containing and minimizing the Wiener
Index (the sum of pairwise shortest distances) between a set of query
vertices Q:

H™ = argmm Z dais
GIS:QTSTV ¢ “re o

* NP-hard to find the optimal such connector

* Devised a constant factor approximation algorithm
* runsin O(|Q] |E|)
* parameter-free



Example: Karate Club




Smaller, denser and more central vertices

0(H) [VIH]|

be(H)

W(H)

. e
em’a\\ \Je’a‘i’x’ of o2 ,ac.,’do Ao\ \JOO’N\O

671 819 9028 12758 11804 17865
155 188 4556 1735 7349 5615
137 100 1846 598 842 684
26 24 26 26 25 19
24 24 23 23 23 17
0.016 0.016 0.01 <0.01 <0.01 0.01
0.047 0.028 0.02 0.019 0.01 <0.01
0.029 0.039 0.02 0.07 0.01 0.02
0.080 0.088 0.090 0.09 0.08 0.1
0.093 0.091 0.106 0.13 0.11 0.13
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.03 0.02 <0.01 <0.01 <0.01 <0.01
0.03 <0.01 <0.01 0.02 0.01 <0.01
0.09 0.07 0.10 0.11 0.10 0.13
0.11 0.11 0.12 0.14 0.12 0.18
~ 70k =~2M = 137TM =~ 292M ~ 400M ~ 1.5G
54598 69296 ~ 50M ~&83M =~ 12.6M =~ 561M
52222 15838 =~ 7.5M 40079 ~12M =~ 1.3M
1200 1259 1164 1318 3371 1324
968 931 923 1007 2043 956

CTP
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PPR
ST
WS-Q
CTP
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ST
WS-Q
CTP
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PPR
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WS-Q
CTP
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PPR
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WS-Q
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Summary of results

Findbilng a connector for a set of query nodes in a graph is an interestingand relevant
problem

Wiener Index is the sum of shortest-path distances, which is intuitive graph measure
of closeness

Constant factor approximation algorithm that runs in O(| Q| | E|)
* Parameter-free

Returns small and dense subgraphs
e Easyto visualize and explain
* Fast to compute
* No matter whetherthe query nodes belongto the same community or not
e Adds “important” nodes (high centrality) while optimizing distances between all added nodes

For query nodes across different communities:
* Connectorcontainsnodesthat span structuralholes (bridges between communities)



Extension: Relaxed Connector Problem

* Previously, we considered the question of the form:
 Summarize the relationships that exist among among all query vertices

* Wiener Connector gave us a small, informative answer

* Another type of question can be:
 Summarize the relationships that may exist among all, or parts of query vertices



Desired properties of relaxed solution

* Parsimonious vertex addition
* Vertices should be added iff they help form a more cohesive subgraph

* Qutlier Tolerance
* Query vertices which are far from others should remain disconnected

* Multi-community awareness

* If the query vertices span multiple communities, connectedness should not
be imposed among them



Minimizing Network Inefficiency

* Find the relaxed connected subgraph that minimizes the network
inefficiency among a set of query vertices Q:

7(G) = 1 H* = argmin I(G[S])
(©) = u;V dG('U u) G[S]:0CSCV
UFov

* NP-hard to find the optimal such relaxed connector

* Parameter-free



Proposed Greedy Algorithm

1. Start with a (Wiener?) connector for Q

2. Remove one vertex at a time until Q is disconnected
* Note: Demands recomputation of pairwise shortest paths withinintermediate
solutions

3. Choose the intermediate solution that minimizes I(G)



Example: Brain Co-Activation Network

Centerpiece Subgraph Minimum Wiener Connector

638 vertices (cortical areas)
18625 edges (functional associations)

Cocktail Party

@
Q@ —
o @ o
‘ __*, k - _——_-b
Bump Hunting MDL-based Minimum

Inefficiency

memory and motor function (blue vertices)
emotions (yellow vertices)

visual processing (red vertices)

green vertices are added to produce solution
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Shortest-paths framework on evolving graphs

1. Inputted graphs are dynamic
* Need to update shortest paths for re-computing full connector

2. Re-computation of shortest paths for the relaxed solution
* Nodes sequentially removed -> “dynamic” subgraph for study

3. Estimated shortest path distances (via oracles)
* Oracles need to be updated (landmarks, etc.)

4. Parallelization of computation
e Shortest path summaries computed faster and efficiently



Load Balancing of Skewed Workloads: PKG*

* MAU Nasir, G. De Francisci Morales, D. Garcia-Soriano, N. Kourtellis, M. Serafini. Partial Key Grouping:
Load-Balanced Partitioning of Distributed Streams. IEEE ICDE 2015

* MAU Nasir, G. De Francisci Morales, N. Kourtellis, M. Serafini. When Two Choices Are not Enough:
Balancing at Scale in Distributed Stream Processing. IEEE ICDE 2016



Data Distributions: Usually skewed!

* Example Domains

* Social Networks 160

 Web * Scale-free network
 Economy 10” ..

* Biology “

* Example metrics
* Centrality: degree, betweenness, closeness

e Skewed Distribution
* Power-law degree
 Zipf Distribution
* Log Normal

fraction of nodes
5

s

[
(&

4'.___
[ l




Computing on Stream Processing Engines

* Online Machine Learning .
- : STORM"
e Real Time Query Processing

&

* Graph Mining

Flink -

* Continuous Computation

e Streaming Applications -> DAGs
* Heavily depended on key distribution




Stream Grouping

Key or Fields Grouping
* Hash-basedassignment
e Stateful operations, e.g., page rank, degree count
* Efficient Routing
* Load Imbalance

Shuffle Grouping
 Round-robinassignment
» Stateless operations, e.g., data logging, OLTP
* Load Balance
* Additional Memory
* Additional Aggregation phase

* All Grouping




Possible solution to imbalance

* Dynamic load rebalancing
» detect load imbalance
* perform data migration

* Challenges
 How often to check the load imbalance
* Migration: not directly supported in DSPEs + requires modifications
e State management for stateful operation



Partial Key Grouping & Power of 2 choices (POTC)

 Balls-and-bins problem
* For each ball, pick 2 bins uniformly at random
* Assign the ball to least loaded of the 2 bins
* Boundedimbalancein bins

* PKG Algorithm
7+Bins=workers
7+Split each key into 2 workers
7+Estimate load on workers

* Benefits:
* Decentralized
e Stateless
 Handles Skew well

I(t) = m;dx(Lz- (t)) — a,\z(g(Lz-(t)), fori e W




Analysis

* Problem Formulation
* n workers -> bins
* keys kie K -> colors
* m messages -> colored balls
e d -> number of options for each ball (or message)

* Minimize the difference between maximum and average workload



Analysis

 Key Distribution

* We pick each key ki€ K with probability pifrom the distribution D, where
P:2P:2P:....

* Maximum load proportional to most frequent key (with p1)

* If p» > 2/n the expected imbalance will be lower bounded by
I(m) =(p:/2—-1/n) m



Analysis

e Assume a key distribution D with maximum probability p1 < 2/n. Then

the imbalance after m steps of Greedy-d process satisfies, with
probability at least 1 — 1/n,




Analysis

* An example with four workers

* |n ideal scenario, each worker should handle 25% of
the keys

e We need to consider three cases:
* When p1=2/4=0.5




Analysis

* An example with four workers

* |n ideal scenario, each worker should handle 25% of
the keys

e We need to consider three cases:
* When p1=2/4=0.5
* When p:> 0.5




Analysis

* An example with four workers

* In ideal scenario, each worker should handle 25% of the
keys

e We need to consider three cases:
* Whenp:1=2/4=0.5

* When p:1> 0.5
* When p:<0.5
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Applications

* Most algorithms that use Shuffle Grouping can be expressed using
Partial Key Groupingto reduce:
* Memory footprint
* Aggregation overhead

* Algorithms that use Key Grouping can be rewritten to achieve load
balance



Examples

* Naive Bayes Classifier
e Streaming Parallel Decision Trees

* Heavy Hitters and Space Saving



Naive Bayes Classifier

 Counts co-occurrences of each feature and class value

* Key Grouping

 Vertical Parallelism: each feature is tracked by single worker process

* Shuffle Grouping

* Horizontal Parallelism: each feature is tracked by all worker processes

* Partial Key Grouping

* Each feature is tracked by exactly two processes



Stream Groupings: A (new) summary

Stream Grouping Pros Cons
Key Grouping - Scalable - Load Imbalance
Shuffle Grouping - Load Balance - Memory Overhead

- Aggregation O(W)

Partial Key Grouping - Scalable - Aggregation O(1)
- Load Balance
- Memory Cost




Experimental Questions

* How does local estimation compare to a global oracle?
* How robust is Partial Key Groupingin skew?
* How does PKG perform on a real deployment on Apache Storm?



Metric: Load Imbalance

* The difference between the maximum and the average load of the
workers at time t

I(t) = max(Li(t)) — avg(Li(t)), for i € W
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Effect of Key Splitting

Dataset Wikipedia (WP) Twitter (TW)
Workers — § 10 50 100 5 10 50 100
PKG 0.8 2.9 59ed5 8.0edb 04 1.7 2.74 4.0e6
Off-Greedy 0.8 0.9 1.6e6 1.8¢6 0.4 0.7 7.8¢6 2.0e7
On-Greedy 7.8 1.4e5 1.6e6 1.8¢6 8.4 92.7 1.2e7 2.0e7
POTC 15.8 1.7ed 1.6e6 1.8e6 2.2¢4 5.1e3 1.4e7 2.0e7
Hashing 1.4e6 1.7¢6 2.0e6 2.0e6 4.1e7 3.7e7 2.4e7 3.3e7
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Local Load Estimation

5 10 50
workers

100

S

10 50 10
workers
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Robustness in drift

 Changing trends in data: cashtags
 Usedin the stock market to identify a publicly traded

company: e.g., SAAPL for Apple

 Skewed load at source: graph metrics for social networks

e Testdifferent data distribution at the sources

o0 [Tsia HA -3 |

i —+— HA e B
14000 1= "“¢g GAIN
12000 [FAAPL ------

10000 -
8000
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2000

0 ' ' .
week1 week2 week3 week4

total tweets per week




Robustness in drift
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Robustness: Uniform vs. Skewed distribution
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Real deployment: Apache Storm

Throughput (keys/s)

1600 ——————————
1400 - _
1200 | N*\ _
1000 N _
800 \
o Tokg %
400 | _
SG
200 + KG: % i
ob— v v
0 02 04 06 08

(a) CPU delay (ms)

1200 | 600
3005 @
O
685
MO0 - oo B
10s
® 305 PKG @
10s Eg ..........
1000 ) '6 - :
0.10 2.10 410 6.10

(b) Memory (keys)



What's next?

Novel metrics to capture graph dynamics
» Speed / acceleration of change
* Change:nodes/edges/weights

Graph dynamics considered

* Time granularity
* Graph entity granularity (node/edge/weight level, community/cluster level, ...)

Novel systems for graph mining
* Distributed and parallel stream processing
* Real-timeconstraints

Applications
* Time-critical constraints
* Predictions
* Recommendations
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