
Synthetic Graph Generation from Finely-Tuned
Temporal Constraints

Karim ALAMI
University of Bordeaux

joint work with

Radu CIUCANU and Engelbert MEPHU NGUIFO
(University Clermont Auvergne)

TDLSG workshop
Sep 18, 2017

Table of contents

EGG : Evolving Graph Generator

Evaluation of EGG

Conclusion

Karim ALAMI 2 / 25

EGG : Evolving Graph Generator

Evaluation of EGG

Conclusion

Karim ALAMI 3 / 25

Evolving graphs

Graphs represent several domains where there is interactions
between entities,as social networks, �ow networks, biology,
geography, and others.

Graphs evolve over time, we can cite two types of evolution :

I Validity of subgraphs during an interval of time.

I Evolving properties of nodes and edges.

Karim ALAMI 4 / 25

mac
Note
graphs represent several domain where there is interactions between entities, as social networks, where there is friendship or work relation between person nodes, also as geography, for example, a bus network, where nodes are bus stations and edges are bus lines. But graphs evolve over time , and we can cite two types of evolution : 1 validity of subgraphs during an interval of time, 2 Evolving properties of nodes and edges.

Use case

0

1

2

3

4

Evolving properties

• Ticket price
• Booking rate
Static property

• Travel duration Evolving property

• Weather

• Node : City
• Edge : Bus line

[1, 2] ∪ [4, 6]

[5
, 6

]

[2, 3] ∪ [5, 7]
[1, 4] ∪ [6, 7]

[1, 2] ∪ [6, 7]

[2] ∪
[4, 7][1, 3] ∪

[5, 7]

[2, 3] ∪
[5, 6]

[3] ∪
[6, 7]

Karim ALAMI 5 / 25

mac
Note
This is represented in the following use case that represents a bus network between cities. Nodes are cities and edges are bus lines. We can see that edges have validity time, represented in integers to simplify time processing, the meaning of a time instant depends on the use case, here the difference between two time instants is one hour and a time instant represents the departure time of a bus. Nodes don't have validity time as they always exist. Nodes and edges have also evolving properties, for example, nodes can have weather property, and edges can have ticket price and bootking rate, however travel duration is usually a static property.

Processing evolving graphs

New approaches for processing evolving graphs.

For eg. the best path from 0 to 3

I The shortest path : 0 -> 3

I The fastest path : 0 -> 3, 1 hour

I The earliest arrival path : 0 -> 1 -> 3, arrival before 4.

Karim ALAMI 6 / 25

mac
Note
This kind of graphs needs new approaches for the processing, for example the shortest path is unsufficent for this graph, let s take a guy that is in city 0 and wants to go to city 3, we suppose that edges have the same weight, and travel duration is less than one hour, the sortest path will be to go from 0 to 3 directly, but he will have to wait until instant 5, new approaches like the fastest path will answer also 0 -> 3 as it takes less than an hour, however the earliest arrival path, will answer the path 0 -> 1 -> 3, with arrival before 4. To implement and evaluate those new approaches, the community needs a large dataset of evolving graphs, which is hardly available, that drove us to study the evolving graph generation.

Graph generation

I gMark 1 : schema-driven static graph generator.

I EvoGen 2 : evolving LUBM 3 generator

1. Bagan, Bonifati, Ciucanu, Fletcher, Lemay, Advokaat. gMark :

Schema-Driven Generation of Graphs and Queries. TKDE'17.
2. M. Meimaris. Evogen : a generator for synthetic versioned RDF. In

EDBT/ICDT, 2016.
3. Y. Guo and et al. LUBM : A benchmark for OWL knowledge base systems. J.

Web Sem., 3(2-3) :158-182, 2005.
Karim ALAMI 7 / 25

mac
Note
In the context of graph generation, we have gMark which is a static graph generator driven by a graph schema defined by the user. EvoGen is an extension of LUBM, a benchmark for owl knowledge base systems, EvoGen allows to add time dimension to LUBM Schema.

Architecture

EGG : Evolving Graph Generator

Graph con�guration

• Size
• Node types
• Edge predicates
• Schema constraints
• Degree distributions

gMark
Static graph generator

Graph instance �le
(CSV)

EGG con�guration

• # of snapshots
• Domain of properties
• Evolving properties (nodes and edges)
• Transition rules

EGG
Generator & Translator

RDF annotated with
temporal information

we take the following gMark con�guration : n=50,
Θ = (city , hotel), Σ = (train, contains),
T (city) = 0.1,T (hotel) = 0.9,
η(city , train, city) = (n, u), η(city , contains, hotel) = (z , u).

Karim ALAMI 8 / 25

mac
Note
For our solution we decided to depend on gMark for the static graph generation as we can see in the architecture, we have chosen gMark because it is schema driven, we can shape the static graph as we want, by defining its size, the node types, the edges predicates , schema constraints and degree distributions, the output of gMark is a set of triples formatted in a csv file For egg, we define the number of snapshot, a snapshot is a time instant, we define also properties and their domain, and transition rules between snapshots, the output is an RDF graph annotated with temporal information.
For the rest of the presentation, we take the following gMark configuration described in the slide

EGG con�guration

We de�ne ∆ = (S , I , σ,map,Φ) as the evolving graph generator
con�guration :

• Interval I : # of periods we want to generate.
• σ : �nite set of dynamic properties, is a union of 4 sets of
properties type :

I σ1 : set of qualitative properties without order.
e.g., weather

I σ2 : set of qualitative properties with order.
e.g., airQuality, star

I σ3 : set of quantitative properties with discrete values.
e.g., roomAvailable

I σ4 : set of quantitative properties with continuous values.
e.g., hotelPrice, trainPrice

• map : function that maps edge predicates and node types to
their properties.

Karim ALAMI 9 / 25

EGG con�guration(suite)

Φ de�nes for each property, its domain, its evolution parameters,
and its in�uence on other properties

• Γ : frequency of value change
• value mapping vi : σi → (interval |set of values)

e.g., weather->"sunny","cloudy","rainy",...

e.g., trainPrice->[20,100]

• distribution of values λ : (Σ ∪Θ, σ)→ distributionlaw

e.g., train, trainPrice->gaussian

• dynamicity : probability that a value change from a valid period
to another.
• succession :

function values

σ1 succ P(v1(σ1))
σ2 ∪ σ3 io�set [x , y] ∈ Z
σ4 ro�set [x , y] ∈ R

Karim ALAMI 10 / 25

EGG con�guration(suite)

Correlation rules : there is a need to de�ne two types of rules

I rules that de�ne the property domain
e.g., the star of a hotel define its price range

I rules that de�ne the property evolution
e.g., if availableRoom goes down, then the price will grow up

Karim ALAMI 11 / 25

Implementation challenges

We had some implementations challenges regarding the processing
and memory usage.

I To make the system �nish in reasonable time.

I And to consume less memory.

Some steps

I Check that dependence graph of the properties is acyclic

I Lighten some constraints

I Minimize the storage redundancy

Karim ALAMI 12 / 25

mac
Note
we had some implementation challenges regrading the processing and memory usage. first, to make the system finish in reasonable time,
and second to consume less memory as we want to generate large evolving graphs. For that purpose, we had to check that dependence graph of properties is acyclic, otherwise, the system will never finish,
lighten some contraints: for example, property of a node depends only on other properties of this node, and not the neighboring nodes.
Minimize storage redundancy by avoiding storing the same information twice.

Approach

1. Generate a static graph SG through gMark.

2. Sort topologically properties dependencies.

3. Generate the �rst valid graph G0.(Subgraph of SG)

4. Generate evolving properties for G0.

5. For each snapshot in (1,n)

5.1 Generate the valid graph Gi .

5.2 Generate the evolving properties for Gi .

Karim ALAMI 13 / 25

Serialization

A storage that minimizes redundancy of data.

I RDF with temporal predicates 4 : we store the static
information once in a named graph and the evolving data in
named graphs that have temporal information.

e.g., ns1:G31 {<hotel:27> ns2:hasProperty

<Property:availableRooms>}

I Version graph 5 : we store only an edge with its valid interval.
e.g., 657 567 2,8 10,20

4. J. Tappolet and et al. Applied temporal RDF : e�cient temporal querying of RDF
data with SPARQL. In ESWC, pages 308-322, 2009.

5. K. Semertzidis and et al. TimeReach : Historical reachability queries on evolving
graphs. In EDBT, pages 121-132, 2015.

Karim ALAMI 14 / 25

mac
Note
we made two serializations: RDF and version graph.

RDF modelize graphs as set of triples and Named graph is like subgraphs that assemble triples with the same properties, so we store the static information once in a named graph as you can see in the example below, hotel 27 has the propeerty avaialableRooms, this static information in the named graph G31, then we recall this named graph each time we want to affect to it a value in a snapshot.
Version graph is a light representation of an evolving graph. it was described in the article TimeReach, we store only an edge with its two end vertices, and a union of intervals where the edge is valid. as you can see in the example

Expressiveness

With the �nely-tuned constraints of EGG con�guration, we express
several real world use cases

dblp : stores nodes of type author and edges of type co-author.

social : stores persons as nodes, and friendship relation as edges.

univ : LUBM 6like use case.

shop : WatDiv 7like use case.

6. Y. Guo and et al. LUBM : A benchmark for OWL knowledge base systems. J.
Web Sem., 3(2-3) :158-182, 2005.

7. G. Aluc and et al. Diversi�ed stress testing of RDF data management systems. In
ISWC, pages 197-212, 2014. Data Management Systems

Karim ALAMI 15 / 25

EGG : Evolving Graph Generator

Evaluation of EGG

Conclusion

Karim ALAMI 16 / 25

Accuracy

We developed a visualization module to illustrate the accuracy of
EGG generation with respect to the con�guration.

I by visualizing the evolution of properties of a node or edge.

I by visualizing the evolution of a property regarding all the
nodes or edges that have this property

40

45

Va
lu

es

Property availableRooms of node 39 of type hotel

14

16

Va
lu

es

Property hotelPrice of node 39 of type hotel

1
2
3
4
5

Va
lu

es

Property star of node 39 of type hotel

0 5 10 15 20 25 30
Time

Validity of node 39 of type hotel
T

0 5 10 15 20 25 30
Time

0

100

200

300

400

500

600

Va
lu

es

Property hotelPrice of hotel

Karim ALAMI 17 / 25

mac
Note
the left plot illustrates the evolution of the properties of the node 39 of type hotel, we can see the anti correlation between the properties availableRooms and HotelPrice, also hotelPrice is bounded by the interval 10,20 because its star value is 1.

the right plot illustrates the distribution of the property hotelPrice over all nodes of type hotel. we can see that no node hotel has a value around 700 euros because no hotel with star value 5 has been generated.

Scalability

We evaluate the scalability with respect to two parameters :

I size of the static graph in the gMark con�guration.

I number of graph snapshots in the EGG con�guration.

Machine con�guration :16 x 2.4 GHz CPU and 64 GB RAM,
reporting averages over 5 runs

102 103 104 105 106 107

of graph nodes

10 1

100

101

102

103

104

Ti
m

e
in

 se
co

nd
s

of graph snapshots set to 100
dblp use case
social use case
trip use case

101 102 103

of graph snapshots

101

102

103

Ti
m

e
in

 se
co

nd
s

of graph nodes set to 100000
dblp use case
social use case
trip use case

Karim ALAMI 18 / 25

mac
Note
the first scalability experiment is shown in the left plot, we fixed the number of graph snapshots to 100 snapshots, and we vary the size of the static graph, which is the number of graph nodes, we can see the linear behavior as we go from 100 nodes to 10 million nodes.

Also in the right plot, we fixed the number of graph nodes to one hundred thousand, and vary the the number of graph snapshots from 10 to one thousand snapshots we can see also the linear behavior.

so our implementation allows a linear time generation of an evolving graph.

Problem

To illustrate the ease of using EGG in empirical evaluations.

Historical Reachability problem : asks whether there exists a path
between two nodes in a speci�ed interval of time.

I Disjunctive-BFS 8 presented in the paper, based on dynamic
programming takes as input the evolving graph in version
graph format.

I SPARQL implementation on top of Apache JENA 9 with
evolving graph in RDF format.

8. K. Semertzidis and et al. TimeReach : Historical reachability queries on evolving
graphs. In EDBT, pages 121-132, 2015.

9. https ://jena.apache.org/
Karim ALAMI 19 / 25

h
mac
Note
To illustrate the ease of using EGG in empirical evaluations, which is the first goal of our work, we tried to evaluate an evolving graph processing system on top of EGG output, we took the historical Reachability problem described in the article Time Reach.
THe Historical Reachability problem : asks whether there exists a path between two nodes in a specified interval of time.
The approach Disjunctive-BFS presented in the paper, based on dynamic programming takes as input the evolving graph in version graph format.
We confronted it to a SPARQL implementation on top of Apache JENA with evolving graph in RDF format.
And we tried to answer to the same problem by the two approaches.

Experiments

We have run two experiments that we have found relevant as they
express di�erence between the two approaches :

10 snapshots
Interval=[0,9]

100 snapshots
Interval=[45,54]

1000 snapshots
Interval=[495,504]

0

500

1000

1500

2000

Ti
m

e
(in

 se
co

nd
s)

60

658

76 111 165

Historical Reachability Queries: Disjunctive-BFS vs SPARQL
 Graph of size 100K nodes, 500K edges; Fixed query size=10

Disjunctive-BFS
SPARQL
SPARQL 'out of memory' exception

interval=[50,50] interval=[45,54] interval=[25,74] interval=[0,99]

0

100

200

300

400

500

600

Ti
m

e
(in

 se
co

nd
s)

633 634 633 635

47 44 32 33

Historical Reachability Queries: Disjunctive-BFS vs SPARQL
 Graph of size 100K nodes, 500K edges; Fixed # of snapshots=100

Disjunctive-BFS
SPARQL

Karim ALAMI 20 / 25

mac
Note
We have run two experiments that we have found relevant as they express difference between the two approaches,
first: we fix size of static graph output of gMark to one hundred thousand nodes, fix interval size to 10, and vary the number of snapshots. We can see in the left plot that from a big evolving graph with one thousand snapshots. the sparql engine runs out of memory.

second: we fix size of static graph output of gMark to one hundred thousand nodes, fix number of snapshots to 100 and vary the interval size in the disjunctive historical reachability query. we can see that the execution time of sparql query is constant, as sparql construct all the graph in memory and then answers the query, so for all graphs with same size, the execution time is always the same, whatever the query.

i precise that it is not a comparaison study between the two approaches, as we didnt optimize the sparql implementation, the goal was to show that egg output can be treated by different approaches.

EGG : Evolving Graph Generator

Evaluation of EGG

Conclusion

Karim ALAMI 21 / 25

Synthesis

Contribution

I Generation of evolving graphs driven by �nely-tuned
constraints de�ned by the user.

I Serialization of the evolving graph in RDF.

I Use in empirical evaluations of evolving graph processing
systems.

Future work

I Computational complexity of the generation process.

Karim ALAMI 22 / 25

Valorization

Open source

Available on Github repository at
https://github.com/karimalami7/EGG

Publications
Alami, Ciucanu, Mephu Nguifo
EGG : A Framework for Generating Evolving RDF Graphs
ISWC 2017 demo

Acknowledgement

LEG Project : Large Evolving Graphs
http ://leg.isima.fr/

Karim ALAMI 23 / 25

https://github.com/karimalami7/EGG

Snippets of EGG output

Version graph of social use case (generation of 10 snapshots)
30 0 0,9
40 0 3,9
16 0 0,9
1 1 0,9
16 1 0,9
33 2 1,9
12 2 1,9
10 2 1,9
33 2 0,9
9 2 2,9
32 3 1,9
10 3 0,9
23 4 1,9
30 4 0,9

Karim ALAMI 24 / 25

Snippets of EGG output

RDF graph of social use case (generation of 10 snapshots)
ns1 :snapshot5 {
<person :1> ns2 :friendOf <person :31> .
<person :11> ns2 :friendOf <person :12> .
<person :20> ns2 :friendOf <person :18>, <person :37> .
<person :27> ns2 :friendOf <person :14>, <person :42>,
<person :49> .
<person :34> ns2 :friendOf <person :0>, <person :16>,
<person :17>, <person :32> .
<person :38> ns2 :friendOf <person :13>, <person :43>,
<person :6> .
...}

Karim ALAMI 25 / 25

	EGG: Evolving Graph Generator
	Evaluation of EGG
	Conclusion

