
Design and implementation issues of a
time-dependent shortest path algorithm
for multimodal transportation network

1LIM Lab. IOS, National School of business and Management, Casablanca, Morocco
2LIM Lab. IOS, Computer Sciences Department, FSTM, Morocco

3David Lab. University of Versailles Saint-Quentin-en-Yvelines, Versailles, France

Abdelfettah IDRI1, Mariyem OUKARFI2, Azedine BOULMAKOUL2

and Karine ZEITOUNI3

This work was supported by the MESRSFC and the CNRST – Morocco

Joint Workshop on Large-Scale Evolving Networks and Graphs

Outline
� Scope
� Constraint Based Shortest Path Algorithm (CBSPA)
� Search process
� Search dimensions
� Building process of the solution
� Experiments
� Large scale networks
� Preliminary Results
� Conclusion & future work

2

Scope
� Transport planning

problem ?
◦ Travel time
◦ Financial costs
◦ Multimodality
◦…

è Shortest path
problem ?

3

Scope

� How to efficiently compute the shortest path from s to t ?
� Taking both Time variation and multimodality of the network

raises the problem of big search space

t

s
Mode 1

Mode 1

Mode YMode 1

Mode 3

Mode X

Mode 2

Mode 2

Mode 2

Mode 1

Time
Tables

4

CBSPA : Constraint Based Shortest
Path Algorithm

4

5
9

20

7

8

6

3

11

13

17

10

15

12

21

14
19

1

2

18

s

t

forwardbackward

5

CBSPA : Constraint Based Shortest
Path Algorithm

� Virtual path from s to t (VsVt)
� Search space restriction by mean of the

user-defined constraint “d”
� Increasing d with Δd whenever it is

necessary without surpassing Dmax
� Possibility of navigating back and forth to

capture more nodes

6

CBSPA Algorithm
Algorithm CBSPA (u, d, path ,Q , t)

Output: shortest path
// (VsVt): virtual path which is calculated based on the coordinates (Euclidean

case: straight line between Vs and Vt) or the minimal/mean value of the cost
function (in our case, the travel time)
// Q: the set of the neighbors of u satisfying the constraint control, a

parameter needed to forward the intermediate results
// t: start time; u: start node
// d : represents the mean distance(cost) from all nodes to the virtual path

// Dmax: represent the maximum value of d, that’s the distance (cost) to the
farthest node of the network

𝑑 =#𝑑𝑖𝑠𝑡'𝑣𝑖 , (𝑉𝑠𝑉𝑡)-
𝑛

1

𝑛0

7

CBSPA Algorithm
1 If u = Vt then
2 Return path
3 Else
4 Let Q = {v Neighbors(u)/ dist(v,(VsVt)) ≤ d}
5 if Q = Ø then
6 If d < Dmax then
7 CBSPA (u, d+Δd ,path,Q,t)
8 Else
9 Let w = predecessor(u)
10 CBSPA(w,d+Δd, path\{u},Q,t)
11 Else
12 Let Qnew =
13 Let Q = {v Qnew/dist(v,(VsVt))<d} in
14 CBSPA(v,d,path{v},Q\{v},t)

*The function OneStepMMTDSP(v,t) generates the next iteration
candidates based on the timetable of the vertex v from Vs to Vt. 8

Fig. 1. CBSPA Algorithm

5 Search process

In this section, we present the details of the search process based on the different
search dimensions expressed in terms of abstraction layers. It also handles the build-
ing process of the complete solution as well as that of the shortest path.

Algorithm CBSPA (u, d, path ,Q , t)
 Output: shortest path
 // (VsVt): virtual path which is calculated based

on the coordinates (Euclidean case: straight line

between Vs and Vt) or the minimal/mean value of the

cost function (in our case, the travel time)

 // Q: the set of the neighbors of u satisfying

the constraint control, a parameter needed to for-

ward the intermediate results

 // t: start time; u: start node

 // 𝑑 = 𝑑𝑖𝑠𝑡 𝑣𝑖 , 𝑉𝑠𝑉𝑡 𝑛
1 𝑛 : represents the mean dis-

tance(cost) from all nodes to the virtual path

 // Dmax: represent the maximum value of d, that’s
the distance (cost) to the farthest node of the

network

1 If u = Vt then
2 Return path
3 Else
4 Let Q = {v ∈ Neighbors(u)/ dist(v,(VsVt)) ≤ d}
 In
5 if Q = Ø then
6 If d < Dmax then
7 CBSPA (u, d+Δd ,path,Q,t)
8 Else
9 Let w = predecessor(u) in
10 CBSPA(w,d+Δd, path\{u},Q,t)
11 Else
12 Let Qnew = 𝑂𝑛𝑒𝑆𝑡𝑒𝑝𝑀𝑀𝑇𝐷𝑆𝑃(𝑣, 𝑡)𝑣⋲𝑄 in
13 Let Q = {v ∈ Qnew/dist(v,(VsVt))<d} in
14 ∀ v ∈ Q, CBSPA(v,d,path ∪ {v},Q\{v},t)

Fig. 1. CBSPA Algorithm

5 Search process

In this section, we present the details of the search process based on the different
search dimensions expressed in terms of abstraction layers. It also handles the build-
ing process of the complete solution as well as that of the shortest path.

Algorithm CBSPA (u, d, path ,Q , t)
 Output: shortest path
 // (VsVt): virtual path which is calculated based

on the coordinates (Euclidean case: straight line

between Vs and Vt) or the minimal/mean value of the

cost function (in our case, the travel time)

 // Q: the set of the neighbors of u satisfying

the constraint control, a parameter needed to for-

ward the intermediate results

 // t: start time; u: start node

 // 𝑑 = 𝑑𝑖𝑠𝑡 𝑣𝑖 , 𝑉𝑠𝑉𝑡 𝑛
1 𝑛 : represents the mean dis-

tance(cost) from all nodes to the virtual path

 // Dmax: represent the maximum value of d, that’s
the distance (cost) to the farthest node of the

network

1 If u = Vt then
2 Return path
3 Else
4 Let Q = {v ∈ Neighbors(u)/ dist(v,(VsVt)) ≤ d}
 In
5 if Q = Ø then
6 If d < Dmax then
7 CBSPA (u, d+Δd ,path,Q,t)
8 Else
9 Let w = predecessor(u) in
10 CBSPA(w,d+Δd, path\{u},Q,t)
11 Else
12 Let Qnew = 𝑂𝑛𝑒𝑆𝑡𝑒𝑝𝑀𝑀𝑇𝐷𝑆𝑃(𝑣, 𝑡)𝑣⋲𝑄 in
13 Let Q = {v ∈ Qnew/dist(v,(VsVt))<d} in
14 ∀ v ∈ Q, CBSPA(v,d,path ∪ {v},Q\{v},t)

Search process
� Target oriented
� Driven by three search dimensions
◦ Mode
◦ Time
◦ User-defined constraint d

� Each physical edge generates instances in
the 3 dimensional space based on the
search function fs(m,t,d)

9

Search process
Vj

Vi

time

mode

d

fs(m,t,d)

emk,tk,dkeij

em1,t1,d1 … emk,tk,dk …

Partial	solution

verified criteria

10

Search layers

eij

Vj

Vi

(a)em	,	tk	,	d

em ,	t1	,	d

(b)emk	,	t	,	d

em1	,	t	,	d

(c)em	,	t	,	dk

em	,	t	,	d1

Vi
Vj

(a) time layer (b) multimodality layer (c) constraint layer

11

Time dependency layer
� A timetable is assigned to each edge
� Edge scenario = departure-arrival case
� Set of edge instances from Time

dependency view point = set of edge
scenarios

� Each instance has to be handled while
fixing (projection) the mode and the
constraint

12

Multimodality layer
� modes are assigned to each edge
� Edge scenario = given mode
� Set of edge instances from Mode view

point = set of edge scenarios
� Each instance has to be handled while

fixing (projection) the time and the
constraint

13

Constraint layer
� Only the edges respecting the constraint

are considered for the search process
� Edge scenario = given constraint value
� Set of edge instances from Constraint

view point = set of edge scenarios
� Each instance has to be handled while

fixing (projection) the time and the mode

14

Building process of the solution
� Based on the partial / complete solution

approach
� Backtracking mechanism
� Eliminating visited 3 dimensional instances

(mark and unmark instances (not edges))

15

Building process of the solution

em1, t1 , d1 em2, t2 , d2 ….. emi, ti , di emi+1, ti+1 , di+1

Step k

em1, t1 , d1 ….. emi, ti , di emi+1, ti+1 , di+1

Step k+1

Add next solution element
and update BFS queue

Remove dead end solution element
and update BFS queue

16

Example :
Mode 1 Mode 2

Edge Timetable Cost function Edge Timetable Cost function

a à e 1 à 3 2 e à d 1 à 4 7

3 à 4 4 12 à 15 3

e à c 3 à 5 1 a à f 4 à 6 4

4 à 8 1 7 à 9 1

c à b 6 à 8 5 f à c 6 à 7 1

7 à 10 2 8 à 9 5

g à a 2 à 3 7 g à a 3 à 9 1

9 à 11 6 8 à 11 10

b à g 9 à 10 1 b à g 10 à 11 5

10 à 11 1 13 à 15 8

17

Example : network presentation

18

Example : results
Path	to	find	:[[Node	id:	1]======>[
Node	id:	2]]

[

[start	 node:	[Node	id:	1]]

[end	node:	[Node	id:	5]]

[travel	:	1	===>	3	===>	2]

[mode	:	1]

[start	 node:	[Node	id:	5]]

[end	node:	[Node	id:	3]]

[travel	:	3	===>	5	===>	1]

[mode	:	1]

[start	 node:	[Node	id:	3]]

[end	node:	[Node	id:	2]]

[travel :	6	===>	8	===>	5]

[mode	:	1]

[Total	cost :	8]

]

time	:0	s

Final	D:	10

Path	to	find	:[[Node	id:	3	
]======>[Node	id:	7]]

[

[start	node:	 [Node	id:	3]]

[end	node:	 [Node	id:	2]]

[travel :	6	===>	8	===>	5]

[mode	:	1]

[start node:	 [Node id:	2]]

[end	node:	 [Node id:	7]]

[travel :	9	===>	10	===>	1]

[mode	:	1]

[Total	cost :	6]

]

time	:0	s

Final	D:	5

19

Evaluation - Impact of the network
density on the constraint parameter

20

Evaluation - Performances wrt
Network Size

21

Large scale networks
� Parallel distributed architecture relying on

Manager / Agent model
� Scalability
� Performance
� CORBA based architecture
� AMI communication model

22

Large scale networks
	

Manager	

Collector	Dispatcher	 Communicati
on	Manager	

AMI	Router	

Agent	1	 Agent	i	 Agent	n	

23

Large scale networks
� Agent : computes elementary

intermediate paths
� Manager: builds the complete solution,

dispatches the tasks, collects the
intermediate results and covers the
communication issues

24

Preliminary Results

25

6 Idri et al. / Transportation Research Procedia 00 (2017) 000–000

compared with its performance in distributed architecture.
The CSPA algorithm in the implemented prototype is a variant of A* algorithm in a way that the algorithm use

A* for the elementary step function . Therefore, different instances of CSPA is compared in the
first place with A* to point out the notable reduction of computational time (figure 6). The comparison shows how
our approach applied to A* can reduce the CPU time efficiently in comparison with A*. We try to give three
different values to the parameter for the two architectures (monolithic: case1/distributed: case2) and calculate the
corresponding execution time. The performance of the algorithm is more significant in in both cases which
include the importance of the choice of the calculation method for the upper bound that conducts the search process.
The impact of the distribution is shown in the figure 6 if we compare CSPA for monolithic architecture and CSPA’
for distributed architecture. The gap between the different values is noticeable.

Table 2 shows the performance of the proposed approach in monolithic and distributed architecture. The results in
this table are given in terms of computation time and space. These values have been calculated on multiple
independent runs for four instances of the SPP, with different number of vertices, edges, and transport modes.

According to the CPU time, the proposed approach provides the best result for almost all instances in distributed
architecture especially for big instances.

We can conclude here that the distributed CSPA’ presents an optimal solution for reducing the search space and
reducing the computation time.

Table 2. CPU time comparison between the performance of CSPA in monolithic and distributed architecture
Graph instance CPU Time (x10-2ms)

| | | | | | Monolithic arch. Distributed arch.
100 230 3 0.8 0.77
500 800 3 1.66 1.62

1000 2600 3 2.85 1.5
2000 5000 3 3.01 1.86

6. Conclusion

In this paper, we give an overview of the modeling of solving time-dependent route planning in multimodal
transportation networks. Our added value to this routing problem is proposing an approach to find the shortest path
with optimal searching process which is designed to handle the time-dependent shortest path algorithm problematic
for multimodal transportation network. It is implemented in a parallel distributed architecture using CORBA for
Manager/Agent model. In the future, the evaluation of our proposed algorithm will be done by comparing the
performance of CSPA with other algorithms such as ALT with more variation of modes.

Acknowledgment
This work was partially funded by the CNRST project in the priority areas of scientific research and

technological development “Spatio-temporal data warehouse and strategic transport of dangerous goods”.

References

Ayed, H., & Khadraoui, D., 2008. “Transfer graph approach for multimodal transport problems”. Second International Conference MCO, Metz,
France – Luxembourg.

Bakalov, P., Hoel, E., & Heng, W. L. 2015. Time dependent transportation network models. In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on (pp. 1364-1375). IEEE.

Bast, H. et al., 2009. “Route planning in transportation networks.” Technical Report MSR-TR-2014-4. Microsoft Research, Microsoft Co.
Bielli, M., Boulmakoul, A., and Mouncif, H., 2006. “Object modeling and path computation for multimodal travel systems”. European Journal of

Operational Research pp. 175, 1705–1730.
Cooke, K. and Halsey, E., 1966. “The Shortest Route through a Network with Time- Dependent Intermodal Transit Times”. Journal of

Mathematical Analysis and Applications, (14):493{498.
Idri, A. et al., 2017. “A new time-dependent shortest path algorithm for multimodal transportation network”. Procedia Computer Science.

Manuscript submitted for publication.

Conclusions and future work
ü Design and implementation aspects of our proposed solution

dealing with the Time-dependant multimodal transport
problem

ü CBSPA algorithm to find the shortest path
ü Design techniques to drive the search process in a 3

dimensional search space
ü A CORBA parallel distributed architecture to address the

big data issue
Ø Thorough experimental evaluation is still to be conducted
Ø Investigation of the integration of our approach in existing

algorithms

26

� THANK YOU

27

