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Scope
� Transport planning 

problem ?
◦ Travel time
◦ Financial costs
◦ Multimodality
◦…

è Shortest path 
problem ?
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Scope

� How to efficiently compute the shortest path from s to t ?
� Taking both Time variation and multimodality of the network 

raises the problem of big search space
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CBSPA : Constraint Based Shortest 
Path Algorithm 
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CBSPA : Constraint Based Shortest 
Path Algorithm 

� Virtual path from s to t (VsVt)
� Search space restriction by mean of the 

user-defined constraint “d”
� Increasing d with Δd whenever it is 

necessary without surpassing Dmax
� Possibility of navigating back and forth to 

capture more nodes
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CBSPA Algorithm
Algorithm CBSPA (u, d, path ,Q , t)

Output: shortest path
// (VsVt): virtual path which is calculated based on the coordinates (Euclidean 

case: straight line between Vs and Vt) or the minimal/mean value of the cost 
function (in our case, the travel time) 
// Q: the set of the neighbors of u satisfying the constraint control, a 

parameter needed to forward the intermediate results
// t: start time; u: start node
// d : represents the mean distance(cost) from all nodes to the virtual path

// Dmax: represent the maximum value of d, that’s the distance (cost) to the 
farthest node of the network 

𝑑 =#𝑑𝑖𝑠𝑡'𝑣𝑖 , (𝑉𝑠𝑉𝑡)-
𝑛

1

𝑛0  
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CBSPA Algorithm
1    If u = Vt then
2       Return path
3    Else
4 Let Q = {v  Neighbors(u)/ dist(v,(VsVt)) ≤ d}
5 if Q = Ø then
6 If d < Dmax then
7 CBSPA (u, d+Δd ,path,Q,t)
8 Else
9 Let w = predecessor(u) 
10 CBSPA(w,d+Δd, path\{u},Q,t)
11 Else
12 Let Qnew =  
13 Let Q = {v  Qnew/dist(v,(VsVt))<d} in
14 CBSPA(v,d,path{v},Q\{v},t)

*The function OneStepMMTDSP(v,t) generates the next iteration 
candidates based on the timetable of the vertex v from Vs to Vt. 8

   

 

Fig. 1. CBSPA Algorithm 

5 Search process 

In this section, we present the details of the search process based on the different 
search dimensions expressed in terms of abstraction layers. It also handles the build-
ing process of the complete solution as well as that of the shortest path. 
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Search process
� Target oriented
� Driven by three search dimensions
◦ Mode
◦ Time
◦ User-defined constraint d

� Each physical edge generates instances in 
the 3 dimensional space based on the 
search function fs(m,t,d)
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Search process
Vj

Vi

time

mode

d

fs(m,t,d)

emk,tk,dkeij

em1,t1,d1 … emk,tk,dk …

Partial	solution

verified criteria
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Search layers

eij
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Vi
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(a) time layer (b) multimodality layer (c) constraint layer
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Time dependency layer
� A timetable is assigned to each edge
� Edge scenario = departure-arrival case
� Set of edge instances from Time 

dependency view point = set of edge 
scenarios

� Each instance has to be handled while 
fixing (projection) the mode and the 
constraint
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Multimodality layer
� modes are assigned to each edge
� Edge scenario = given mode
� Set of edge instances from Mode view 

point = set of edge scenarios
� Each instance has to be handled while 

fixing (projection) the time and the 
constraint
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Constraint layer
� Only the edges respecting the constraint 

are considered for the search process
� Edge scenario = given constraint value
� Set of edge instances from Constraint 

view point = set of edge scenarios
� Each instance has to be handled while 

fixing (projection) the time and the mode
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Building process of the solution
� Based on the partial / complete solution 

approach
� Backtracking mechanism
� Eliminating visited 3 dimensional instances 

(mark and unmark instances (not edges))
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Building process of the solution

 

em1, t1 , d1 em2, t2 , d2 ….. emi, ti , di emi+1, ti+1 , di+1 
 

Step k 

em1, t1 , d1 ….. emi, ti , di emi+1, ti+1 , di+1 
 

Step k+1 

Add next solution element 
and update BFS queue 

Remove dead end solution element 
and update BFS queue 
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Example : 
Mode 1 Mode 2

Edge Timetable Cost function Edge Timetable Cost function

a à e 1 à 3 2 e à d 1 à 4 7

3 à 4 4 12 à 15 3

e à c 3 à 5 1 a à f 4 à 6 4

4 à 8 1 7 à 9 1

c à b 6 à 8 5 f à c 6 à 7 1

7 à 10 2 8 à 9 5

g à a 2 à 3 7 g à a 3 à 9 1

9 à 11 6 8 à 11 10

b à g 9 à 10 1 b à g 10 à 11 5

10 à 11 1 13 à 15 8
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Example : network presentation
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Example : results
Path	to	find	:[	[	Node	id:	1	]======>[	
Node	id:	2	]	]

[	

[	start	 node:	[	Node	id:	1	]]

[	end	node:	[	Node	id:	5	]]

[	travel	:	1	===>	3	===>	2]

[	mode	:	1]

[	start	 node:	[	Node	id:	5	]]

[	end	node:	[	Node	id:	3	]]

[	travel	:	3	===>	5	===>	1]

[	mode	:	1]

[	start	 node:	[	Node	id:	3	]]

[	end	node:	[	Node	id:	2	]]

[	travel :	6	===>	8	===>	5]

[	mode	:	1]

[	Total	cost :	8]

]

time	:0	s

Final	D:	10

Path	to	find	:[	[	Node	id:	3	
]======>[	Node	id:	7	]	]

[	

[	start	node:	 [	Node	id:	3	]]

[	end	node:	 [	Node	id:	2	]]

[	travel :	6	===>	8	===>	5]

[	mode	:	1]

[	start node:	 [	Node id:	2	]]

[	end	node:	 [	Node id:	7	]]

[	travel :	9	===>	10	===>	1]

[	mode	:	1]

[	Total	cost :	6]

]

time	:0	s

Final	D:	5
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Evaluation - Impact of the network 
density on the constraint parameter
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Evaluation - Performances wrt
Network Size
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Large scale networks
� Parallel distributed architecture relying on 

Manager / Agent model
� Scalability
� Performance
� CORBA based architecture
� AMI communication model
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Large scale networks
	

Manager	

Collector	Dispatcher	 Communicati
on	Manager	

AMI	Router	

Agent	1	 Agent	i	 Agent	n	
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Large scale networks
� Agent : computes elementary 

intermediate paths
� Manager: builds the complete solution, 

dispatches the tasks, collects the 
intermediate results and covers the 
communication issues
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Preliminary Results
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compared with its performance in distributed architecture. 
The CSPA algorithm in the implemented prototype is a variant of A* algorithm in a way that the algorithm use 

A* for the elementary step function              . Therefore, different instances of CSPA is compared in the 
first place with A* to point out the notable reduction of computational time (figure 6). The comparison shows how 
our approach applied to A* can reduce the CPU time efficiently in comparison with A*. We try to give three 
different values to the parameter   for the two architectures (monolithic: case1/distributed: case2) and calculate the 
corresponding execution time. The performance of the algorithm is more significant in    in both cases which 
include the importance of the choice of the calculation method for the upper bound that conducts the search process. 
The impact of the distribution is shown in the figure 6 if we compare CSPA for monolithic architecture and CSPA’ 
for distributed architecture. The gap between the different values is noticeable. 

Table 2 shows the performance of the proposed approach in monolithic and distributed architecture. The results in 
this table are given in terms of computation time and space. These values have been calculated on multiple 
independent runs for four instances of the SPP, with different number of vertices, edges, and transport modes. 

According to the CPU time, the proposed approach provides the best result for almost all instances in distributed 
architecture especially for big instances. 

We can conclude here that the distributed CSPA’ presents an optimal solution for reducing the search space and 
reducing the computation time. 

Table 2. CPU time comparison between the performance of CSPA in monolithic and distributed architecture 
Graph instance CPU Time (x10-2ms) 

| | | | | | Monolithic arch. Distributed arch. 
100 230 3 0.8 0.77 
500 800 3 1.66 1.62 

1000 2600 3 2.85 1.5 
2000 5000 3 3.01 1.86 

6. Conclusion 

In this paper, we give an overview of the modeling of solving time-dependent route planning in multimodal 
transportation networks. Our added value to this routing problem is proposing an approach to find the shortest path 
with optimal searching process which is designed to handle the time-dependent shortest path algorithm problematic 
for multimodal transportation network. It is implemented in a parallel distributed architecture using CORBA for 
Manager/Agent model. In the future, the evaluation of our proposed algorithm will be done by comparing the 
performance of CSPA with other algorithms such as ALT with more variation of modes. 
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Conclusions and future work
ü Design and implementation aspects of our proposed solution 

dealing with the Time-dependant multimodal transport 
problem

ü CBSPA algorithm to find the shortest path
ü Design techniques to drive the search process in a 3 

dimensional search space
ü A CORBA parallel distributed architecture to address the 

big data issue
Ø Thorough experimental evaluation is still to be conducted 
Ø Investigation of the integration of our approach in existing 

algorithms
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