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Abstract. In this paper we present a novel approach to solve the Time-

Dependent Nearest Server problem, i.e., the problem of finding a service

provider that, given a requesting user, can reach the user’s geographical
location as early as possible while taking into account tra�c conditions.
We also present a reduction of the above problem to the fastest-path

problem to prove the correctness and bound the time complexity of our
approach. In the experimental evaluation we compare our approach with
respect to the state-of-art, and show its e↵ectiveness in terms of accuracy
and performance.
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1 Introduction

Large amounts of vehicles in big urban agglomerations usually create serious
mobility issues, such as congestion. Indeed, tra�c conditions can change consid-
erably over time, ranging from rush hours to regular hours, thus having relevant
impacts on travel times. Consequently, taking into account tra�c conditions is
essential to improve the quality of location-based services, for example by pro-
viding better route plans.

In this context, we model a road-network as a time-dependent road-network
– i.e., the costs associated with the edges of the network can vary over time –
and attempt to solve a variation of the problem of computing nearest neighbor
queries over time-dependent networks, i.e., the Time-Dependent Nearest Server
(TDNS) problem[1]); here, the goal is to find out a service provider (e.g. taxis,
ambulances, firefighters, etc.) that can reach some requesting user in the shortest
amount of time while taking into account tra�c conditions.

Figure 1 provides an example of the applicability of TDNS queries: let us
suppose there is a user issuing an emergency call and a system has to find
out which ambulance, among those available, can reach the user’s location in
the shortest amount of time. In this context, we model the network by means



of a time-dependent network, where streets get associated with edges. Ambu-
lances moving over the network may require to update frequently their positions.
Also, to take into account tra�c conditions each edge is associated with a time-
dependent cost function that determines the travel time needed to cross the edge
at the time instant an object starts traversing it (e.g., rush hours typically imply
higher costs).

Fig. 1: Example of nearest service provider objects.

In this paper, we propose a new method to solve TDNS queries. Di↵er-
ently than the algorithm proposed in [1], our solution returns exact travel times.
Furthermore, our solution can be easily extended to manage frequent position
updates, thus allowing on-line query processing. Finally, we show how we reduce
the TDNS problem to the time-dependent fastest path problem and prove the
correctness of the reduction; we note that the reduction is conducted in linear
time and thus has minor impacts on the performance of our approach.

The rest of the paper is structured as follows: Section 2 provides the defini-
tions and the problem statement. Section 3 reviews the related works. Section 4
illustrates the approach we propose to compute TDNS queries. Finally, Section 5
presents the experimental evaluation, while Section 6 draws the final conclusions.

2 Preliminaries

A time-dependent graph (TDG) G = (V,E,C) is a directed graph where
V = {v1, . . . vn} represents a set of vertices, E = {(v

i

, v
j

) | v
i

, v
j

2 V, i 6= j}
represents a set of edges, and C = {c(v

i

,v

j

)(·) | (v
i

, v
j

) 2 E}, with c(v
i

,v

j

) :
[0, T ] ! R+, represents a set of cost functions. Each cost function attributes a
positive weight to the associated edge, depending on the time instant t 2 [0, T ]
provided to the function (T is a domain-dependent time length).

Since G is directed, bidirectional segments may have associated di↵erent edge
costs, i.e., c(u,v)(t) 6= c(v,u)(t). Furthermore, we assume that C represents a set
of piecewise linear functions that satisfy the FIFO property, i.e., if an object



Fig. 2: A time-dependent graph (left plot) and examples of cost function for the
edges (A,B) (center plot), (B,A) (center plot) and (B,C) (right plot).

A starts crossing an edge before an object B, then A has to finish crossing
the edge before B. We remind that the problem of finding the fastest path in
time-dependent networks that satisfy the FIFO property has a polynomial time
solution, while it is NP-hard in non-FIFO networks [2]. Figure 2 presents a TDG
and an example of travel time function that satisfies the FIFO property.

Given a TDG G = (V,E,C), a path P = hv
p1 · · · , vpn�1 , vpn

i in G and a
departure time t 2 [0, T ], we define the travel time (TT) of P to be the
time-dependent cost to traverse P ; this cost is defined as the sum
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use of modulo is to deal with time cycles (e.g., a day implies T = 24 hours). We
also define the time-dependent fastest path (TDFP) from a vertex v to a
vertex u at time t to be the path with the minimum travel time; we denote it
by TDFP (v, u, t).

A Point of Interest (POI) represents an object within the underlying
network that can be characterized by its geographic coordinates (latitude and
longitude). In most of the works present in the literature a POI represents just
a static entity, such as a hospital, a restaurant, and so on. In our case, however,
POIs represent moving objects acting as service providers. For simplicity, from
here on we use the term point of interest (POI) to refer to a service provider. At
this point we can provide the problem statement.

Definition 1 (Problem statement). Given a time-dependent graph G =
(V,E,C), a query point q, a time-instant t, and a set P of moving objects
(POIs) in G, the Time-Dependent Nearest Server (TDNS) problem re-
quires to retrieve the object p 2 P such that, 8p0 2 P , p0 6= p, we have that
TT (TDFP (p, q, t), t)  TT (TDFP (p0, q, t), t).



3 Related Work

The first algorithm that considers a time-dependent variant of the shortest path
problem was proposed in [3]. Here, the authors present a modified form of the
Bellman’s iteration scheme to find the shortest route between any two vertices in
a network. In [4] the authors propose an approach that is based on a bidirectional
A⇤ search with landmarks to solve the time-dependent shortest path problem.

Other related works solve the problem of finding the k nearest neighbors in
time-dependent networks, where the goal is to find the first k POIs that can be
reached from the query point in the shortest amount of time (time-dependent
k-NN query). The problem was first introduced in [5], where the authors propose
and compare two di↵erent approaches: the first approach relies on time-expanded
graphs, which allow to exploit previous solutions in the domain of static networks
to solve the considered problem. The second approach is based on the INE
algorithm [6], which expands the search starting from the query point until it
finds the k nearest neighbors.

Another solution [7] attacks the above problem by adopting a schema based
on an incremental expansion that incorporates an A⇤ search with a successive
pruning phase; here, the authors leverage an heuristic function that works well
with time-dependent networks. The intuition behind the approach is to discard
vertices that are near the query point but far from any point of interest. Finally,
upper-bounds on travel times are used to prune unpromising paths.

Others works propose solutions that deal with variations of the problem
of computing k-NN queries over time-dependent networks. In [8], the authors
propose A⇤-based solutions to compute k-NN queries where the operating times
of points of interest (e.g., opening/closure time of a commercial center) are taken
into account. In time-dependent k-NN queries, we are interested to go from a
given query point to a set of fixed POIs in the lowest possible time. The problem
we consider in this work is thus di↵erent, in that POIs represent moving service
providers.

Finally, in [1] the authors present the problem of finding the nearest service
provider (POI) in time-dependent networks. They propose two solutions: the first
one is a näıve approach that executes the fastest path algorithm between a query
point q and each POI in P , and returns the solution having the minimum cost.
The second solution is based on a breadth-first search conducted on a reverse
graph: the reverse graph is obtained from the original graph by reverting the set
of edges, i.e., an edge (b, a) exists in the reverse graph if and only if (a, b) exists in
the original graph. The experimental evaluation shows that the second solution
outperforms the näıve solution and exhibits good execution times; however, since
the algorithm exploits reverse graphs, travel times associated with paths may be
di↵erent than the travel times in the original graph.

Finally, we mention that this solution requires each POI to be associated
with a node in the original graph, which in turn represents a potential bottleneck
during the processing.



4 Competitive Network Expansion

The goal of this section is to introduce our proposal, i.e., the competitive network
expansion (CNE), and the key ideas that brought to its conception. The Compet-
itive Network Expansion algorithm considers the original graph to compute the
cost of the paths from a set of service providers (POIs) to a query point q – as
such, our algorithm is guaranteed to always return exact costs. A näıve solution
would calculate the fastest paths between all the POIs and q, and pick up the
fastest one. Instead, we base our iterative search on the idea of computing the
paths from all the POIs in a competitive way, where at each step the POI having
the highest chance to be q’s nearest neighbor acquires the most preference.

4.1 Competitive Search

Given a set of POIs P , we apply a search algorithm to select the nearest POI
among the candidates. Our search step is based on a reduction of the TDNS
problem to the fastest path problem. Before delving into the inner workings
of the search step, we need to show how the reduction is carried on. The idea
behind the reduction is that, by including a virtual node vn in G connected to
all the POIs in P , and by adding in E zero-cost edges that connect vn to all the
POIs in P , we have that the fastest path between vn and q passes through q’s
nearest POI.

Theorem 1. Let G = (V,E,C) be a TDG and PC = {pc1, · · · pc�}, PC ✓ P ,
be a set of POIs; let us obtain from G a transformed graph G0 = (V 0, E0, C 0) by
including a virtual node, vn, and a set of virtual edges, that is, V 0 = V [ {vn},
E0 = E [ {(vn, pc1), · · · , (vn, pc�)}, and C 0 = C [ {c(vn,pc1) = 0, · · · , c(vn,pc

�

) =
0}. If the time-dependent fastest path from vn to q pass through pc 2 PC, and
pc is the first POI in PC that appears in the path, then pc is the TDNS of q.

Proof. Let pc be the first POI in the time-dependent fastest path from vn to q.
If pc is the first POI, then pc is the second vertex in this path, because vn has
edges only with POIs in PC. Furthermore, the cost of the fastest path from vn
to q at time t is TDFP(vn, q, t) = c(vn,pc)(t) + TDFP(pc, q, t) = TDFP(pc, q, t),
since c(vn,pc)(t) = 0. Let us suppose that pc is not the TDNS of q: then, there
must be another POI pc0 2 PC that is the TDNS of q, since TDFP(pc0, q, t) <
TDFP(pc, q, t) = TDFP(vn, q, t); however this is impossible, since this would
imply that there exists a faster path than the fastest one.ut

At this point we can describe the search step of CNE. Our approach uses a
variant of the A⇤ algorithm [9] to find out the fastest path from the virtual node
to the query point. In this context we use the travel time, in conjunction with a
heuristic function, h(.), to determine the order in which vertices are considered
during the search. We note that the heuristic function must be admissible, i.e.,
it must not overestimate the distance from the vertex to the goal; as such, we
recur to a lower bound distance, i.e., given any vertex u and the query point q,



we define h(u) = d
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is the maximum velocity allowed on the network. The pseudo-code of
CNE is provided in Algorithm 1.

Algorithm 1: Competitive Network Expansion
Input : A TDG G = (V,E,C), a query point q, a departure time t, a set of POIs PC, the

number of candidates �.
Output: The reverse nearest neighbor of q

1 begin
2 visited  InitQueue(G,PC, q, t)
3 while visited 6= ; do
4 (u,AT

u

, TT

u

, L

u

) Dequeue(visited)
5 Mark u as DEQUEUED
6 if u = q then
7 return (u,AT
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8 foreach v 2 Neighbors(u) do
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12 if v is not marked as VISITED then
13 Mark v as VISITED
14 visited Enqueue((v,AT
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))

Algorithm 2: InitQueue(G,PC, q, t)
Input : A TDG G = (V,E,C), a set of POIs, PC = {pc1, · · · pc�}, a query point q, and a

departure time t.
Output: The queue initialized with candidate POIs.

1 begin
2 queue ;
3 foreach poi 2 PC do
4 TT

poi

 0
5 AT

poi

 t

6 L

poi

 d

E

(poi,q)
V

max

7 queue Enqueue((poi, AT

poi

, TT

poi

, L

poi

), queue)
8 Mark poi as VISITED

9 return queue

First, with respect to the original A⇤ algorithm we change the way the queue
is initialized (InitQueue, line 2); more precisely, in G0 we have that the costs
associated with the edges between vn and the POIs in PC are zero. As such, we
can ignore the additional edges added in G0 and start the search directly from
the POI candidates, since the reduction happens in linear time on size of PC



(by virtue of Theorem 1). Consequently, between lines 2 and 8 of InitQueue
(Algorithm 2) each candidate p gets included in a priority queue, visited, which
is sorted according to L

p

, i.e., the distance from the virtual node, vn, to p, plus
h(p). Subsequently, CNE goes on until visited gets empty (line 3) or the query
point is reached (lines 6-7). As in the case of original A⇤-search, at each iteration
one node is dequeued and marked accordingly (lines 4-5), while the neighbors
that were not marked as VISITED get enqueued (line 14). If a neighbor was
already visited, and its new travel time is better than the current one, then its
state get updated (lines 17-18).

4.2 Reducing the number of POI candidates

According to Theorem 1, CNE is an exact algorithm. However, expanding all the
POIs in the network is unnecessary, since this would make the solution näıve. As
such, we suggest to perform a candidate generation phase before executing Al-
gorithm 1; the goal of this phase is to produce a set of candidate POIs according
to the (Euclidean) distance between the POIs and the query point.

During the candidate generation phase, we compute k-NN queries between
the query point and the POIs – to this end we observe that, the lower the number
of candidates, the smaller the chance that the correct result will be returned by
CNE; Section 5 studies the impact that this factor has on the quality of results.
We also maintain an R-Tree that is used to index the vertices of the graph.
Since search algorithms typically suppose that POIs are associated with the
vertices of the graph, the goal of this data structure is to facilitate the related
map-matching.

Overall, the candidate generation step helps to decrease the execution time
of CNE and the time to map-match POIs.

5 Experimental Evaluation

The goal of this section is two-fold: first, we assess the accuracy of CNE and to
do so we use the output returned by the Naive algorithm as our ground truth
– we remind that the Naive approach computes the fastest paths between the
POIs and the query point and picks up the fastest among these. Subsequently,
we compare CNE with Breadth-First Search (BFS) in reverse graphs [1], the
state-of-the-art in the current literature.

5.1 Setup

For the purposes of this work, all the approaches were implemented on top
of the Graphast framework [10] and a public implementation of R-Trees1. The
experiments are conducted on a virtual machine, provided by Amazon AWS,
with 2 Intel Xeon CPUs clocked at 2.4 GHz, 8 GB of RAM, and Ubuntu OS
(16.04).

1
https://github.com/davidmoten/rtree



Comparison of Accuracy

DESCRIPTION SCENARIO A SCENARIO B SCENARIO C

10 99 98 98

20 99 98 99

30 100 98 99

40 99 99 100

50 100 100 100

Accuracy of CNE X Number of Candidates

Ac
cu

ra
cy

 (%
)

97

98

99

99

100

Number of Candidates
SCENARIO A SCENARIO B SCENARIO C

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

100.00100.00100.00 100.00

98.8298.82 98.85

97.65

100.00

98.85

97.65

98.82

97.70
97.60

98.80

Fig. 3: CNE accuracy – variable number of candidates.

We use the road network related to the city of Fortaleza, obtained by collect-
ing the data available from the Open Street Map Project2. The graph represent-
ing the network contains around 100.000 nodes, while travel time functions are
synthetically generated. In the experiments, we consider three distinct scenarios
involving real-world POIs, where we vary their density and distribution; more
specifically, we consider taxis positions (A) at 7am with 360 POIs, (B) at 12am
with 216 POIs, and (C) at 5pm, with 398 POIS. The set of POI locations was
provided by Taxi Simples, a company that tracks and monitors cabs activities3;
POI positions span one day (July 23, 2016).

5.2 Evaluation

In the first batch of experiments we want to evaluate the impact that the number
of candidates has on CNE’s accuracy; in general we expect that, the less the
candidates provided, the less the resulting accuracy. To this end we compare
the results returned by CNE with the ones returned by the Naive approach.
Figure 3 presents the accuracy achieved by CNE when using 10, 20, 30, 40, and
50 candidates.

From the Figure 3, we see that the minimum accuracy achieved by CNE
is 97.65% (scenario B, 10 candidates). With 50 candidates, all POIs returned
were the correct nearest service provider. We also report that once the number
of candidates gets above 50, CNE was always able to achieve total correctness
(100%).

In the second batch of experiments we evaluate the execution time of CNE,
Naive and BFS. We consider, again, the three scenarios introduced before, and
measure the CPU time needed to update the POI locations and run the search.

2
http://wiki.openstreetmap.org/wiki/Main_Page

3
http://www.taxisimples.com.br/



Comparison of Accuracy

DESCRIPTION SCENARIO A SCENARIO B SCENARIO C

Naïve 10,904 20,428 20,477

BFS 1,689 2,836 3,370

CNE 714 718 796

CPU Time Evaluation
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Fig. 4: CPU time comparison between CNE and BFS.

Fig. 5: CPU time comparison between CNE and BFS – variable POI density.

In this context, we also enforce CNE to produce 50 candidates. Each test is
repeated 100 times. Figure 4 presents the results. From this figure, we see that
CNE always outperforms the competitors; the average CPU times achieved by
Naive when considering the scenarios A, B, and C were, respectively, 10.504
ms, 20.429 ms and 20.477 ms, almost two orders of magnitude greater than the
times achieved by CNE.

If we compare CNE with BFS, we see that the speedups yielded by our
approach are equal, respectively for the scenarios A, B, and C, to 2.4⇥, 3.9⇥ and



4.2⇥. Finally, we observe that the execution time of CNE remains always below
800 ms and that it exhibits an almost constant trend: as such, we argue that the
number of POIs in the network has a minimal impact on CNE’s performance.

In the third, final batch of experiments we evaluate how the performance of
CNE is a↵ected when the POI density (i.e., the rate of POIs per node) increases.
We generate 10 sets of synthetic POIs in the network, in the [0, 1%; 1%] density
range, and compare the CPU time of CNE and BFS. We also enforce CNE to
produce 50 candidates at the end of the candidate generation phase. Figure 5
shows the average time and standard deviation obtained with 100 executions.

From the Figure 5, we see that the CPU time of CNE remains constant –
thus indicating that the candidate generation phase makes CNE scalable with
respect to the POI density – while the CPU time of BFS increases linearly.

6 Conclusions and Future Work

In this paper we propose a new approach to solve nearest service provider queries
in time-dependent road networks (TDNS). Among the contributions, we provide
a reduction of the TDNS problem to the fastest path problem, and prove its
correctness. Thanks to this, it is possible to solve our query by applying minor
modifications to the A⇤-search algorithm [9].

Another contribution consists in showing that the application of a candidate
generation phase allows to quickly update POI locations with negligible e↵ects
on the correctness of the final results. Indeed, in the experimental evaluation
we show that our solution achieves at least 97% of accuracy with real-world
datasets, even when using a very low amount of candidates.

Finally, in the experimental evaluation we show that our approach performs
better than the state-of-the-art currently available in the literature [1].

As a future direction of research, we plan to improve the way candidate
POIs are chosen; we also plan to solve the problem of computing a continuous
version of the TDNS query, where we continuously monitor the service providers
to identify the best one in real-time. Finally, we plan to investigate how we can
compute TDNS queries over dynamic networks, where travel-time functions can
be updated over time.
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